79 research outputs found

    Enhanced Nonperturbative Effects in Z Decays to Hadrons

    Full text link
    We use soft collinear effective field theory (SCET) to study nonperturbative strong interaction effects in Z decays to hadronic final states that are enhanced in corners of phase space. These occur, for example, in the jet energy distribution for two jet events near E_J=M_Z/2, the thrust distribution near unity and the jet invariant mass distribution near zero. The extent to which such nonperturbative effects for different observables are related is discussed.Comment: 17 pages. Paper reorganized, and more discussion and results include

    Semi-numerical resummation of event shapes

    Get PDF
    For many event-shape observables, the most difficult part of a resummation in the Born limit is the analytical treatment of the observable's dependence on multiple emissions, which is required at single logarithmic accuracy. We present a general numerical method, suitable for a large class of event shapes, which allows the resummation specifically of these single logarithms. It is applied to the case of the thrust major and the oblateness, which have so far defied analytical resummation and to the two-jet rate in the Durham algorithm, for which only a subset of the single logs had up to now been calculated.Comment: 29 pages, 7 figures. Version 2 adds some clarifications, a reference, as well as corrections to the subleading fixed-order coefficients and to figures 4 and

    The C parameter distribution in e+e- annihilation

    Full text link
    We study perturbative and non-perturbative aspects of the distribution of the C parameter in e+e- annihilation using renormalon techniques. We perform an exact calculation of the characteristic function, corresponding to the C parameter differential cross section for a single off-shell gluon. We then concentrate on the two-jet region, derive the Borel representation of the Sudakov exponent in the large-beta_0 limit and compare the result to that of the thrust T. Analysing the exponent, we distinguish two ingredients: the jet function, depending on Q^2C, summarizing the effects of collinear radiation, and a function describing soft emission at large angles, with momenta of order QC. The former is the same as for the thrust upon scaling C by 1/6, whereas the latter is different. We verify that the rescaled C distribution coincides with that of 1-T to next-to-leading logarithmic accuracy, as predicted by Catani and Webber, and demonstrate that this relation breaks down beyond this order owing to soft radiation at large angles. The pattern of power corrections is also similar to that of the thrust: corrections appear as odd powers of Lambda/(QC). Based on the size of the renormalon ambiguity, however, the shape function is different: subleading power corrections for the C distribution appear to be significantly smaller than those for the thrust.Comment: 24 pages, Latex (using JHEP3.cls), 1 postscript figur

    Scaling Rule for Nonperturbative Radiation in a Class of Event Shapes

    Full text link
    We discuss nonperturbative radiation for a recently introduced class of infrared safe event shape weights, which describe the narrow-jet limit. Starting from next-to-leading logarithmic (NLL) resummation, we derive an approximate scaling rule that relates the nonperturbative shape functions for these weights to the shape function for the thrust. We argue that the scaling reflects the boost invariance implicit in NLL resummation, and discuss its limitations. In the absence of data analysis for the new event shapes, we compare these predictions to the output of the event generator PYTHIA.Comment: 23 pages, 3 figures, uses JHEP3.cls (included); v2 - version to appear in JHE

    Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO

    Get PDF
    We consider QCD radiative corrections to vector-boson production in hadron collisions. We present the next-to-next-to-leading order (NNLO) result of the hard-collinear coefficient function for the all-order resummation of logarithmically-enhanced contributions at small transverse momenta. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. The same coefficient function is used in applications of the subtraction method to perform fully-exclusive perturbative calculations up to NNLO.Comment: 13, pages, no figures. arXiv admin note: text overlap with arXiv:1106.465

    Correcting the Colour-Dipole Cascade Model with Fixed Order Matrix Elements

    Get PDF
    An algorithm is presented in which the Colour-Dipole Cascade Model as implemented in the Ariadne program is corrected to match the fixed order tree-level matrix elements for e+e- -> n jets. The result is a full parton level generator for e+e- annihilation where the generated states are correct on tree-level to fixed order in alpha_S and to all orders with modified leading logarithmic (MLLA) accuracy. In this paper, matrix elements are used up to second order in alpha_S, but the scheme is applicable also for higher orders. An improvement to also include exact virtual corrections to fixed order is suggested and the possibility to extend the scheme to hadronic collisions is discussed

    Resummed event-shape variables in DIS

    Get PDF
    We complete our study of resummed event-shape distributions in DIS by presenting results for the class of observables that includes the current jet mass, the C-parameter and the thrust with respect to the current-hemisphere thrust axis. We then compare our results to data for all observables for which data exist, fitting for alpha_s and testing the universality of non-perturbative 1/Q effects. A number of technical issues arise, including the extension of the concept of non-globalness to the case of discontinuous globalness; singularities and non-convergence of distributions other than in the Born limit; methods to speed up fixed-order Monte Carlo programs by up to an order of magnitude, relevant when dealing with many x and Q points; and the estimation of uncertainties on the predictions.Comment: 41 page

    Local charge compensation from colour preconfinement as a key to the dynamics of hadronization

    Full text link
    If, as is commonly accepted, the colour-singlet, `preconfined', perturbative clusters are the primary units of hadronization, then the electric charge is necessarily compensated locally at the scale of the typical cluster mass. As a result, the minijet electric charge is suppressed at scales that are greater than the cluster mass. We hence argue, and demonstrate by means of Monte Carlo simulations using HERWIG, that the scale at which charge compensation is violated is close to the mass of the clusters involved in hadronization, and its measurement would provide a clue to resolving the nature of the dynamics. We repeat the calculation using PYTHIA and find that the numbers produced by the two generators are similar. The cluster mass distribution is sensitive to soft emission that is considered unresolved in the parton shower phase. We discuss how the description of the splitting of large clusters in terms of unresolved emission modifies the algorithm of HERWIG, and relate the findings to the yet unknown underlying nonperturbative mechanism. In particular, we propose a form of αS\alpha_S that follows from a power-enhanced beta function, and discuss how this αS\alpha_S that governs unresolved emission may be related to power corrections. Our findings are in agreement with experimental data.Comment: 37 pages, 20 figure

    Matching parton showers to NLO computations

    Full text link
    We give a prescription for attaching parton showers to next-to-leading order (NLO) partonic jet cross sections in electron-positron annihilation. Our method effectively extends to NLO the scheme of Catani, Krauss, Kuhn, and Webber for matching between m hard jets and (m+1) hard jets. The matching between parton splitting as part of a shower and parton splitting as part of NLO matrix elements is based on the Catani-Seymour dipole subtraction method that is commonly used for removing the singularities from the NLO matrix elements.}Comment: 45 pages, new introduction, more detailed discussion of the Sudakov reweightin

    Charm-quark fragmentation with an effective coupling constant

    Get PDF
    We use a recently proposed non-perturbative model, based on an effective strong coupling constant and free from tunable parameters, to study c-flavoured hadron production in e+e- annihilation. Charm-quark production is described in the framework of perturbative fragmentation functions, with NLO coefficient functions, NLL non-singlet DGLAP evolution and NNLL large-x resummation. We model hadronization effects by means of the effective coupling constant in the NNLO approximation and compare our results with experimental data taken at the Z0 pole and at the Upsilon(4S) resonance. We find that, within the experimental and theoretical uncertainties, our model is able to give a reasonable description of D*+-meson spectra from ALEPH for x<1-Lambda/m_c. More serious discrepancies are instead present when comparing with D and D^* data from BELLE and CLEO in x-space. Within the errors, our model is nonetheless capable of reproducing the first ten Mellin moments of all considered data sets. However, the fairly large theoretical uncertainties call for a full NNLO/NNLL analysis.Comment: 26 pages, 10 figures. Analysis in Mellin space and few references adde
    • …
    corecore