92 research outputs found

    Prostate-specific antigen testing accuracy in community practice

    Get PDF
    BACKGROUND: Most data on prostate-specific antigen (PSA) testing come from urologic cohorts comprised of volunteers for screening programs. We evaluated the diagnostic accuracy of PSA testing for detecting prostate cancer in community practice. METHODS: PSA testing results were compared with a reference standard of prostate biopsy. Subjects were 2,620 men 40 years and older undergoing (PSA) testing and biopsy from 1/1/95 through 12/31/98 in the Albuquerque, New Mexico metropolitan area. Diagnostic measures included the area under the receiver-operating characteristic curve, sensitivity, specificity, and likelihood ratios. RESULTS: Cancer was detected in 930 subjects (35%). The area under the ROC curve was 0.67 and the PSA cutpoint of 4 ng/ml had a sensitivity of 86% and a specificity of 33%. The likelihood ratio for a positive test (LR+) was 1.28 and 0.42 for a negative test (LR-). PSA testing was most sensitive (90%) but least specific (27%) in older men. Age-specific reference ranges improved specificity in older men (49%) but decreased sensitivity (70%), with an LR+ of 1.38. Lowering the PSA cutpoint to 2 ng/ml resulted in a sensitivity of 95%, a specificity of 20%, and an LR+ of 1.19. CONCLUSIONS: PSA testing had fair discriminating power for detecting prostate cancer in community practice. The PSA cutpoint of 4 ng/ml was sensitive but relatively non-specific and associated likelihood ratios only moderately revised probabilities for cancer. Using age-specific reference ranges and a PSA cutpoint below 4 ng/ml improved test specificity and sensitivity, respectively, but did not improve the overall accuracy of PSA testing

    REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants

    Get PDF
    Supplemental Data Supplemental Data include one figure and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.08.016. Supplemental Data Document S1. Figure S1 and Tables S1–S5 Download Document S2. Article plus Supplemental Data Download Web Resources ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/ REVEL, https://sites.google.com/site/revelgenomics/ SwissVar, http://swissvar.expasy.org/ The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10−12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046–0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027–0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Full text link
    BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite‐based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD ≥ 1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome‐wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13–25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC , an important gene in PC biology. CONCLUSIONS These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer. Prostate 72:410–426, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90245/1/21443_ftp.pd

    Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21

    Get PDF
    Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e−8) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e−11). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer pre-disposition locus

    TGF-β Regulates DNA Methyltransferase Expression in Prostate Cancer, Correlates with Aggressive Capabilities, and Predicts Disease Recurrence

    Get PDF
    DNA methyltransferase (DNMT) is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs). This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP). The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK) was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for CaP prognostication and therapy

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri

    Insertion of an SVA-E retrotransposon into the CASP8 gene is associated with protection against prostate cancer

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Transcriptional and splicing anomalies have been observed in intron 8 of the CASP8 gene (encoding procaspase-8) in association with cutaneous basal-cell carcinoma (BCC) and linked to a germline SNP rs700635. Here, we show that the rs700635[C] allele, which is associated with increased risk of BCC and breast cancer, is protective against prostate cancer [odds ratio (OR) = 0.91, P = 1.0 × 10(-6)]. rs700635[C] is also associated with failures to correctly splice out CASP8 intron 8 in breast and prostate tumours and in corresponding normal tissues. Investigation of rs700635[C] carriers revealed that they have a human-specific short interspersed element-variable number of tandem repeat-Alu (SINE-VNTR-Alu), subfamily-E retrotransposon (SVA-E) inserted into CASP8 intron 8. The SVA-E shows evidence of prior activity, because it has transduced some CASP8 sequences during subsequent retrotransposition events. Whole-genome sequence (WGS) data were used to tag the SVA-E with a surrogate SNP rs1035142[T] (r(2) = 0.999), which showed associations with both the splicing anomalies (P = 6.5 × 10(-32)) and with protection against prostate cancer (OR = 0.91, P = 3.8 × 10(-7)).National Cancer Research Institute (NCRI) G0500966/75466 Department of Health, Medical Research Council Cancer Research UK University of Cambridge NIHR Department of Health Anniversary Fund of the Austrian National Bank 15079 Medical and Scientific Fund of the Mayor of the City of Vienna 10077 Common Fund of the Office of the Director of the National Institutes of Health NCI NHGRI NHLBI NIDA NIMH NINDS NCI\SAIC-Frederick, Inc. (SAIC-F) 10XS170 Roswell Park Cancer Institute 10XS171 Science Care, Inc. X10S172 SAIC-F 10ST1035 HHSN261200800001E deCODE genetics/AMGEN HHSN268201000029C DA006227 DA033684 N01MH000028 MH090941 MH101814 MH090951 MH090937 MH101820 MH101825 MH090936 MH101819 MH090948 MH101782 MH101810 MH10182

    Genetic correction of PSA values using sequence variants associated with PSA levels

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldMeasuring serum levels of the prostate-specific antigen (PSA) is the most common screening method for prostate cancer. However, PSA levels are affected by a number of factors apart from neoplasia. Notably, around 40% of the variability of PSA levels in the general population is accounted for by inherited factors, suggesting that it may be possible to improve both sensitivity and specificity by adjusting test results for genetic effects. To search for sequence variants that associate with PSA levels, we performed a genome-wide association study and follow-up analysis using PSA information from 15,757 Icelandic and 454 British men not diagnosed with prostate cancer. Overall, we detected a genome-wide significant association between PSA levels and single-nucleotide polymorphisms (SNPs) at six loci: 5p15.33 (rs2736098), 10q11 (rs10993994), 10q26 (rs10788160), 12q24 (rs11067228), 17q12 (rs4430796), and 19q13.33 [rs17632542 (KLK3: I179T)], each with P(combined) <3 × 10(-10). Among 3834 men who underwent a biopsy of the prostate, the 10q26, 12q24, and 19q13.33 alleles that associate with high PSA levels are associated with higher probability of a negative biopsy (odds ratio between 1.15 and 1.27). Assessment of association between the six loci and prostate cancer risk in 5325 cases and 41,417 controls from Iceland, the Netherlands, Spain, Romania, and the United States showed that the SNPs at 10q26 and 12q24 were exclusively associated with PSA levels, whereas the other four loci also were associated with prostate cancer risk. We propose that a personalized PSA cutoff value, based on genotype, should be used when deciding to perform a prostate biopsy.info:eu-repo/grantAgreement/EC/FP7/202059/ 218071 Urological Research Foundation P50 CA90386-05S2 Robert H. Lurie Comprehensive Cancer Center p30 CA60553 Health Technology Assessment Programme 96/20/06 96/20/99 Department of Health, England Cancer Research UK C522/A8649 Medical Research Council of England G0500966 ID 75466 National Cancer Research Institute (NCRI), UK Southwest National Health Service Research and Development NCRI National Institute for Health Resear

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Get PDF
    In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer remains largely incomplete. In a previous microsatellite-based linkage scan of 1233 prostate cancer (PC) families, we identified suggestive evidence for linkage (i.e. LOD≥1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members

    HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG)

    Get PDF
    Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic. To examine this finding in a large international sample of prostate cancer families, we genotyped this mutation and 14 other SNPs in or flanking HOXB13 in 2,443 prostate cancer families recruited by the International Consortium for Prostate Cancer Genetics (ICPCG). At least one mutation carrier was found in 112 prostate cancer families (4.6%), all of European descent. Within carrier families, the G84E mutation was more common in men with a diagnosis of prostate cancer (194 of 382, 51%) than those without (42 of 137, 30%), P=9.9×10−8 [odds ratio 4.42 (95% confidence interval 2.56–7.64)]. A family-based association test found G84E to be significantly over-transmitted from parents to affected offspring (P=6.5×10−6). Analysis of markers flanking the G84E mutation indicates that it resides in the same haplotype in 95% of carriers, consistent with a founder effect. Clinical characteristics of cancers in mutation carriers included features of high-risk disease. These findings demonstrate that the HOXB13 G84E mutation is present in ~5% of prostate cancer families, predominantly of European descent, and confirm its association with prostate cancer risk. While future studies are needed to more fully define the clinical utility of this observation, this allele and others like it could form the basis for early, targeted screening of men at elevated risk for this common, clinically heterogeneous cancer.Electronic supplementary materialThe online version of this article (doi:10.1007/s00439-012-1229-4) contains supplementary material, which is available to authorized users
    corecore