55 research outputs found

    A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation

    Get PDF
    Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C alpha (PKC alpha) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKC alpha by transgenic targeting (K5-PKC alpha), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKC alpha activation, suggesting a feedback regulation of DLX3 and PKC alpha. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3-PKC alpha signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis

    Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    Get PDF
    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-ÎşB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention

    Inflammasome Sensor Nlrp1b-Dependent Resistance to Anthrax Is Mediated by Caspase-1, IL-1 Signaling and Neutrophil Recruitment

    Get PDF
    Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1bS/S or Nlrp1bR/R, respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1bS/S alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1bR/R alleles (which cannot activate caspase-1 in response to toxin). Nlrp1bS-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1bS/S mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1bS/S mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1bS/S,Nlrp1bR/R and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1bS, caspase-1, and IL-1β in countering anthrax infection

    Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin

    No full text
    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment

    Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2.

    No full text
    Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development, and caused premature death. In the current study, we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin, whereas GPx4 loss in the epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles, and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal life span. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4-knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and cyclooxygenase-2 (COX-2) levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis, and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis
    • …
    corecore