164 research outputs found

    Spin states of asteroids in the Eos collisional family

    Full text link
    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin, Evolution & Characterizatio

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    The landward and seaward mechanisms of fine-sediment transport across intertidal flats in the shallow-water region—A numerical investigation

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 60 Suppl. (2013): S85-S98, doi:10.1016/j.csr.2012.02.003.This study investigates transport of fine sediment across idealized intertidal flats with emphasis on resolving processes at the tidal edge, which is defined as the very shallow region of the land-water interface. We first utilize a two-dimensional, vertical numerical model solving the non-hydrostatic Reynolds-averaged Navier-Stokes equations with a k-Δ turbulence closure. The numerical model adopts the Volume of Fluid method to simulate the wetting and drying region of the intertidal flat. The model is demonstrated to be able to reproduce the classic theory of tidal-flat hydrodynamics of Friedrichs and Aubrey (1996) and to predict the turbidity at the tidal edge that is similar, qualitatively, to prior field observations. The Regional Ocean Modeling System (ROMS) is also utilized to simulate the same idealized tidal flat to evaluate its applicability in this environment. We demonstrate that when a small critical depth (hcrit =2 cm) in the wetting and drying scheme is adopted, ROMS is able to predict the main features of hydrodynamics and sediment-transport processes similar to that predicted by the RANS-VOF model. When driving the models with a symmetric tidal forcing, both models predict landward transport on the lower and upper flat and seaward transport in the subtidal region. When the very shallow region of the tidal edge is well resolved, both models predict an asymmetry of tidal velocity magnitude between the flood and the ebb that may encourage landward sediment transport on the flat. Further model simulation suggests that the predicted landward transport of sediment on the flat is mainly due to the settling-lag effect while the asymmetry of tidal velocity magnitude may add a lesser but non-negligible amount. When the bed erosion is limited by the availability of soft mud, the predicted transport direction becomes landward in both the subtidal region and on the flat. These results suggest that the tidal flow generally encourages landward transport while significant seaward transport may be caused by other mechanisms. Comparisons with field observations show similarities in the net landward transport on the flat and enhanced stresses and suspended-sediment concentrations near the very shallow region of the tidal edge. The field results also indicate significant transport of sediment occurs through the channels, as a function of three-dimensional processes, which are not incorporated in the present idealized modeling.This study is supported by U.S. Office of Naval Research (Littoral Science and Optics program manager Dr. Thomas Drake) as part of the Tidal Flat DRI (N00014-09-1-0134; N00014-11-1-0270). SNC received partial support from Taiwan's National Science Council under grant NSC 100-2119-M-002 -028

    Efficacy of novel albendazole salt formulations against secondary cystic echinococcosis in experimentally infected mice

    Get PDF
    8 páginas, 5 figuras, 1 tablaIn this study, we evaluated the efficacy, expressed as a mean weight decrease of the whole echinococcal cyst mass, of novel benzimidazole salt formulations in a murine Echinococcus granulosus infection model. BALB/c mice were intraperitoneally infected with protoscoleces of E. granulosus (genotype G1). At 9 months post-infection, treatment with albendazole (ABZ), ricobendazole (RBZ) salt formulations, and RBZ enantiomer salts (R)-(+)-RBZ-Na and (S)-(−)-RBZ-Na formulations were initiated. Drugs were orally applied by gavage at 10 mg kg−1 body weight per day during 30 days. Experimental treatments with benzimidazole sodium salts resulted in a significant reduction of the weight of cysts compared to conventional ABZ treatment, except for the (S)-(−)-RBZ-Na enantiomer formulation. Scanning electron microscopy and histological inspection revealed that treatments impacted not only the structural integrity of the parasite tissue in the germinal layer, but also induced alterations in the laminated layer. Overall, these results demonstrate the improved efficacy of benzimidazole salt formulations compared to conventional ABZ treatment in experimental murine cystic echinococcosis.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the project HERACLES (http://www.heracles-fp7.eu/), grant agreement no. 602051. The funder of the study had no role in study design, data collection, data analysis, data interpretation or writing of the report.Peer reviewe

    Detection of Echinococcus multilocularis in Carnivores in Razavi Khorasan Province, Iran Using Mitochondrial DNA

    Get PDF
    Echinococcus multilocularis causes alveolar echinococcosis, a serious zoonotic disease present in many areas of the world. The parasite is maintained in nature through a life cycle in which adult worms in the intestine of carnivores transmit infection to small mammals, predominantly rodents, via eggs in the feces. Humans may accidentally ingest eggs of E. multilocularis through contact with the definitive host or by direct ingestion of contaminated water or foods, causing development of a multivesicular cyst in the viscera, especially liver and lung. We found adult E. multilocularis in the intestine and/or eggs in feces of all wild carnivores examined and in some stray and domestic dogs in villages of Chenaran region, northeastern Iran. The life cycle of E. multilocularis is being maintained in this area by wild carnivores, and the local population and visitors are at risk of infection with alveolar echinococcosis. Intensive health initiatives for control of the parasite and diagnosis of this potentially fatal disease in humans, in this area of Iran, are needed

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM
    • 

    corecore