21 research outputs found

    The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Get PDF
    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression

    Comparative EPR and fluorescence conformational studies of fully active spin-labeled melanotropic peptides

    Get PDF
    Similar to melanocyte stimulating hormone (alpha -MSH), its potent and long-acting analogue, [Nle(4), D-Phe(7)]alpha -MSH, when labeled with the paramagnetic amino acid probe 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac), maintains its full biological potency, thus validating any comparative structural investigations between the two labeled peptides, Correlation times, calculated from tire electron paramagnetic resonance signal of Toac bound to the peptides, and Toac-Trp distances, estimated from the Toac fluorescence quenching of the Trp residue present in the peptides, indicate a more rigid and folded structure for the potent analogue as compared to the hormone, in aqueous medium. (C) 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.Universidade Federal de São Paulo, Dept Biofis, BR-04044020 São Paulo, BrazilUniv São Paulo, Inst Fis, BR-66318 São Paulo, BrazilUniv São Paulo, Inst Biociencias, Dept Fisiol, BR-11176 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biofis, BR-04044020 São Paulo, BrazilWeb of Scienc

    Environmental control of biological rhythms: effects on development, fertility and metabolism

    Get PDF
    Internal temporal organisation properly synchronised to the environment is crucial for health maintenance. This organisation is provided at the cellular level by the molecular clock, a macromolecular transcription-based oscillator formed by the clock and the clock-controlled genes that is present in both central and peripheral tissues. In mammals, melanopsin in light-sensitive retinal ganglion cells plays a considerable role in the synchronisation of the circadian timing system to the daily light/dark cycle. Melatonin, a hormone synthesised in the pineal gland exclusively at night and an output of the central clock, has a fundamental role in regulating/timing several physiological functions, including glucose homeostasis, insulin secretion and energy metabolism. As such, metabolism is severely impaired after a reduction in melatonin production. Furthermore, light pollution during the night and shift work schedules can abrogate melatonin synthesis and impair homeostasis. Chronodisruption during pregnancy has deleterious effects on the health of progeny, including metabolic, cardiovascular and cognitive dysfunction. Developmental programming by steroids or steroid-mimetic compounds also produces internal circadian disorganisation that may be a significant factor in the aetiology of fertility disorders such as polycystic ovary syndrome. Thus, both early and late in life, pernicious alterations of the endogenous temporal order by environmental factors can disrupt the homeostatic function of the circadian timing system, leading to pathophysiology and/or disease.This work was supported by grants 1110220 from FONDECYT and ACT1116 from CONICYT, Chile (to HGR); Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Tecnológico e Científico (CNPq; Brazil, to AMC, FGA and JCN); Pro-Reitoria de Pesquisa Universidade Federal de Minas Gerais, Brazil (to MOP); fellowship 21120472 from CONICYT (Chile) to (NM) and an NIEHS sponsored Pilot Grant from the Department of Environmental Medicine at the University of Rochester School of Medicine to MTS

    O Significado Actual do Karaté - Arte Marcial / Desporto de Combate?

    No full text
    Analisando sumariamente os suportes conceptuais dos significados dos conceitos de "arte" e "marcial", desconstruindo o significado do conceito de técnica na base da pedagogia do ensino nos desportos de combate e artes marciais com destaque para o Karaté, passa pelo significado do desporto humanizante. Conclui-se que não há razão para dicotomizar divergentemente o karaté em arte marcial ou desporto de combate, utilizando argumentações ideológicas ou desequilibradas pela ignorância cultural em um dos significantes, pelo que elogia a urgência permanente de comunicação entre partes

    Expression of the Circadian Clock Gene BMAL1 Positively Correlates With Antitumor Immunity and Patient Survival in Metastatic Melanoma

    No full text
    IntroductionMelanoma is the most lethal type of skin cancer, with increasing incidence and mortality rates worldwide. Multiple studies have demonstrated a link between cancer development/progression and circadian disruption; however, the complex role of tumor-autonomous molecular clocks remains poorly understood. With that in mind, we investigated the pathophysiological relevance of clock genes expression in metastatic melanoma.MethodsWe analyzed gene expression, somatic mutation, and clinical data from 340 metastatic melanomas from The Cancer Genome Atlas, as well as gene expression data from 234 normal skin samples from genotype-tissue expression. Findings were confirmed in independent datasets.ResultsIn melanomas, the expression of most clock genes was remarkably reduced and displayed a disrupted pattern of co-expression compared to the normal skins, indicating a dysfunctional circadian clock. Importantly, we demonstrate that the expression of the clock gene aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) positively correlates with patient overall survival and with the expression of T-cell activity and exhaustion markers in the tumor bulk. Accordingly, high BMAL1 expression in pretreatment samples was significantly associated with clinical benefit from immune checkpoint inhibitors. The robust intratumoral T-cell infiltration/activation observed in patients with high BMAL1 expression was associated with a decreased expression of key DNA-repair enzymes, and with an increased mutational/neoantigen load.ConclusionOverall, our data corroborate previous reports regarding the impact of BMAL1 expression on the cellular DNA-repair capacity and indicate that alterations in the tumor-autonomous molecular clock could influence the cellular composition of the surrounding microenvironment. Moreover, we revealed the potential of BMAL1 as a clinically relevant prognostic factor and biomarker for T-cell-based immunotherapies

    Seasonal pelage color change: news based on a South American Rodent

    No full text
    Mammalian seasonalmolting and color change are known to be influencedby photoperiod changes. Calomys laucha, a South American rodent, exhibits seasonal pelage color change; however, unlike Northern hemisphere rodents, which present a gray or brown color during summer and a whitish color during winter, C. laucha pelage changes from an orange color during summer to a dark gray color during winter. Animals maintained for over a year in stationary photoperiod (LD 12:12h, 22◦C) presented orange pelage color during the summer corresponding month (January), and gray color during the winter corresponding month (July). Same age animals were evaluated during summer or winter months, and also showed different colors. Animals exposed for 12 weeks to summer or winter artificial conditions displayed color change, not according to the environmental conditions, as expected, but similar to that of animals maintained in stationary photoperiod. These results suggest that pelage color change in C. laucha is controlled by an endogenous circannual rhythm. The adaptive function of C. laucha color change is discussed.A muda e a mudança de cor sazonal da pelagem de mamíferos são influenciadas por variações no fotoperíodo. Calomys laucha, um roedor sul-americano, exibe mudança de cor de pelagem sazonal; entretanto, diferentemente dos roedores do hemisfério Norte, os quais apresentam cor cinza oumarrom durante o verão e branca durante o inverno, a pelagem de C. laucha muda de uma cor alaranjada durante o verão para cinza escuro durante o inverno. Animais mantidos por mais de um ano em fotoperíodo estacionário (CE 12:12h, 22◦C) apresentaram pelagem alaranjada durante o mês correspondente ao verão (Janeiro), e cor cinza durante o mês de inverno (Julho). Animais de mesma idade foram avaliados durante os meses de verão ou inverno, e também apresentaram pelagem de cores diferentes. Animais expostos a condições artificiais de verão ou de inverno durante 12 semanas sofreram mudança de cor da pelagem, não de acordo com as condições ambientais a que estavam sujeitos como esperado,mas exibiram a mesma cor dos animais mantidos em fotoperíodo estacionário. Estes resultados sugerem que a mudança de cor da pelagem de C. laucha é controlada por um ritmo endógeno circanual

    Responses of melanocytes and melanomacrophages of Eupemphix nattereri (Anura: Leiuperidae) to Nle4, D-Phe7-α-melanocyte stimulating hormone and lipopolysaccharides

    No full text
    Melanocytes are found in various organs of ectothermic animals, playing a protective role against bacteria and free radicals. It is known that pigment cells from hematopoietic organs have immune functions. However, the role of visceral melanocytes is not well understood. Cutaneous melanocytes are responsive to α-melanocyte stimulating hormone (α-MSH), which is associated with the dispersion of melanin granules within melanocytes. α-MSH has also been reported to inhibit most forms of inflammatory responses by decreasing the pro-inflammatory cytokines and neutrophil migration. The present study evaluated the influence of an α-MSH analog (Nle4, D-Phe7-α-MSH) and lipopolysaccharides (LPS) from Escherichia coli on the liver and testicular tissues of the anuran Eupemphix nattereri. The tested hypotheses were: (i) the pigmented area will increase following hormone and LPS administration, (ii) pre-treatment with α-MSH will decrease the number of mast cells, and (iii) the hormone will have protective effects against LPS-induced responses. We found that hormone administration did not change hepatic pigmentation, but increased testicular pigmentation. Testicular pigmentation quickly increased after LPS administration, whereas there was a late response in the liver. The response of enhanced pigmentation was delayed and the number of mast cells decreased in animals previously treated with the α-MSH analog when compared to the LPS group. Hemosiderin and lipofuscin were found in melanomacrophages, but not in testicular melanocytes. Although both the liver and the testes of E. nattereri have pigmented cells, these are distinct in morphology, embryonic origin, and pigmentary substances. These differences may be responsible for the different responses of these cells to the α-MSH analog and LPS administration. © 2013 Elsevier GmbH

    Biological effects of insulin on murine melanoma cells and fish erythrophoroma cells: A comparative study

    No full text
    Insulin is the hormone that plays an essential role in metabolism and mitosis of normal and tumor cells, exerting its pleiotropic effects through binding to specific membrane receptors and promoting the phosphorylation of tyrosine residues of the receptor itself and of other components of the signaling pathway. The aim of this study was to investigate the effects of insulin on melanogenesis and cell growth in three different cell lines: the goldfish GEM-81 erythrophoroma cells (undifferentiated and differentiated with 1.5% dimethylsulfoxide-DMSO), and the murine B16F10 and Cloudman S91 melanoma cells. Undifferentiated GEM-81 and B16F10 cells responded to insulin with a small increase of cell proliferation, whereas S91 cells responded with a decrease of growth. In the two mammalian cell lines, and in DMSO-differentiated GEM-81 cells, the hormone strongly inhibited melanogenesis, by decreasing tyrosinase activity. In undifferentiated GEM-81 cells, insulin had no effect on tyrosinase activity. An increase in the tyrosine phosphorylation status of pp 185 (insulin receptor substrate 1 and 2-IRS-1/2) phosphorylation degree was observed in S91 mouse melanoma and in differentiated GEM-81 erythrophoroma cells, suggesting that this specific protein was maintained during transformation process and participates in insulin signaling. Our results imply an ancient and diverse history of the insulin signaling system in vertebrate pigment cells. (C) 2008 Elsevier Inc. All rights reserved

    Possible role of non-classical chromathophorotropins on the regulation of the crustacean erythrophore

    No full text
    Two neuropeptides, the pigment dispersing hormone (PDH) and the pigment concentrating hormone (PCH), are well known to respectively promote centrifugal and centripetal granule translocation in the freshwater shrimp Macrobrachium potiuna erythrophores. Herein,we demonstrate for the first time the effects of crustacean non-classical chromatophorotropins on the pigment migration in M. potiuna erythrophores. Although proctolin, 20-hydroxyecdisone (20HE),and melatonin were ineffective, the crustacean cardioactive peptide (CCAP) was a full agonist,inducing pigment dispersion in a dose-dependent manner with EC50 of 9.5 · 10–7 M. In addition, concentrations of CCAP lower than the minimal effective dose (10–8 and 10–7 M) decreased the PCH-induced aggregation, shifting rightward the dose-response curve (DRC) to PCH 2.2- and 29-fold, respectively. Surprisingly, melatonin (10–7 and 10–6 M) also shifted to the right 8.7- and 46.5- fold, respectively, the DRC to PCH. In conclusion, our data demonstrate that besides PCH and PDH, CCAP and melatonin also regulate the pigment migration within the crustacean erythrophore

    Photoperiod and testosterone modulate growth and melanogenesis of S91 murine melanoma

    No full text
    In vivo and in vitro assays were performed with S91 murine melanoma cells aiming to investigate the effects of testosterone and photoperiod on tumor growth and melanogenesis (tyrosinase activity). In vivo assays were performed by inducing melanoma tumors in castrated mice receiving increasing concentrations of testosterone and submitted to varying photoperiod regimens. The results demonstrated that the increase of melanin content was higher in animals submitted to the longest days, thus demonstrating the importance of photoperiod length in melanin synthesis. Increase in tumor growth and protein content was observed in testosterone-treated animals submitted to 12L:12D; in testosterone-treated animals submitted to 4L:20D and 20L:4D tumor growth was significantly smaller. In S91 cultured cells, testosterone increased cell proliferation and reduced tyrosinase activity in a dose-dependent manner. Radioactive binding assays demonstrated that the hormone was acting through low affinity testosterone receptors, since the presence of aromatase inhibitor did not affect the binding assay in a statistically significant way, and all the in vitro experiments were performed in the presence of the inhibitor. Our in vivo data added to the in vitro results corroborate the hypothesis that S91 melanoma cells directly respond to testosterone and that this effect is modulated by light
    corecore