184 research outputs found

    Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection

    Get PDF
    Indexación: Scopus.We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin.http://genomea.asm.org/content/5/20/e00379-17.ful

    Genomic analysis of 48 paenibacillus larvae bacteriophages

    Get PDF
    Indexación: Scopus.Funding: Research at UNLV was funded by National Institute of General Medical Sciences grant GM103440 (NV INBRE), the UNLV School of Life Sciences, and the UNLV College of Sciences. E.C.-N. was funded by CONICYT-FONDECYT de iniciación en la investigación 11160905. Research at BYU was funded by the BYU Microbiology & Molecular Biology Department, and private donations through LDS Philanthropies.The antibiotic-resistant bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), currently the most destructive bacterial disease in honeybees. Phages that infect P. larvae were isolated as early as the 1950s, but it is only in recent years that P. larvae phage genomes have been sequenced and annotated. In this study we analyze the genomes of all 48 currently sequenced P. larvae phage genomes and classify them into four clusters and a singleton. The majority of P. larvae phage genomes are in the 38–45 kbp range and use the cohesive ends (cos) DNA-packaging strategy, while a minority have genomes in the 50–55 kbp range that use the direct terminal repeat (DTR) DNA-packaging strategy. The DTR phages form a distinct cluster, while the cos phages form three clusters and a singleton. Putative functions were identified for about half of all phage proteins. Structural and assembly proteins are located at the front of the genome and tend to be conserved within clusters, whereas regulatory and replication proteins are located in the middle and rear of the genome and are not conserved, even within clusters. All P. larvae phage genomes contain a conserved N-acetylmuramoyl-L-alanine amidase that serves as an endolysin. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/1999-4915/10/7/37

    Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance

    Get PDF
    Indexación: Web of Science; Scopus.The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.http://journal.frontiersin.org/article/10.3389/fmicb.2017.00456/ful

    Molecular phylodynamics and protein modeling of infectious salmon anemia virus (ISAV)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ISAV is a member of the <it>Orthomyxoviridae </it>family that affects salmonids with disastrous results. It was first detected in 1984 in Norway and from then on it has been reported in Canada, United States, Scotland and the Faroe Islands. Recently, an outbreak was recorded in Chile with negative consequences for the local fishing industry. However, few studies have examined available data to test hypotheses associated with the phylogeographic partitioning of the infecting viral population, the population dynamics, or the evolutionary rates and demographic history of ISAV. To explore these issues, we collected relevant sequences of genes coding for both surface proteins from Chile, Canada, and Norway. We addressed questions regarding their phylogenetic relationships, evolutionary rates, and demographic history using modern phylogenetic methods.</p> <p>Results</p> <p>A recombination breakpoint was consistently detected in the Hemagglutinin-Esterase (<it>he</it>) gene at either side of the Highly Polymorphic Region (HPR), whereas no recombination breakpoints were detected in Fusion protein (<it>f</it>) gene. Evolutionary relationships of ISAV revealed the 2007 Chilean outbreak group as a monophyletic clade for <it>f </it>that has a sister relationship to the Norwegian isolates. Their tMRCA is consistent with epidemiological data and demographic history was successfully recovered showing a profound bottleneck with further population expansion. Finally, selection analyses detected ongoing diversifying selection in <it>f </it>and <it>he </it>codons associated with protease processing and the HPR region, respectively.</p> <p>Conclusions</p> <p>Our results are consistent with the Norwegian origin hypothesis for the Chilean outbreak clade. In particular, ISAV HPR0 genotype is not the ancestor of all ISAV strains, although SK779/06 (HPR0) shares a common ancestor with the Chilean outbreak clade. Our analyses suggest that ISAV shows hallmarks typical of RNA viruses that can be exploited in epidemiological and surveillance settings. In addition, we hypothesized that genetic diversity of the HPR region is governed by recombination, probably due to template switching and that novel fusion gene proteolytic sites confer a selective advantage for the isolates that carry them. Additionally, protein modeling allowed us to relate the results of phylogenetic studies with the predicted structures. This study demonstrates that phylogenetic methods are important tools to predict future outbreaks of ISAV and other salmon pathogens.</p

    Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities.

    Get PDF
    BACKGROUND: The relationships between infections in early life and asthma are not completely understood. Likewise, the clinical relevance of microbial communities present in the respiratory tract is only partially known. A number of microbiome studies analyzing respiratory tract samples have found increased proportions of gamma-Proteobacteria including Haemophilus influenzae, Moraxella catarrhalis, and Firmicutes such as Streptococcus pneumoniae. The aim of this study was to present a new approach that combines RNA microbial identification with host gene expression to characterize and validate metagenomic taxonomic profiling in individuals with asthma. METHODS: Using whole metagenomic shotgun RNA sequencing, we characterized and compared the microbial communities of individuals, children and adolescents, with asthma and controls. The resulting data were analyzed by partitioning human and microbial reads. Microbial reads were then used to characterize the microbial diversity of each patient, and potential differences between asthmatic and healthy groups. Human reads were used to assess the expression of known genes involved in the host immune response to specific pathogens and detect potential differences between those with asthma and controls. RESULTS: Microbial communities in the nasal cavities of children differed significantly between asthmatics and controls. After read count normalization, some bacterial species were significantly overrepresented in asthma patients (Wald test, p-value \u3c 0.05), including Escherichia coli and Psychrobacter. Among these, Moraxella catarrhalis exhibited ~14-fold over abundance in asthmatics versus controls. Differential host gene expression analysis confirms that the presence of Moraxella catarrhalis is associated to a specific M. catarrhalis core gene signature expressed by the host. CONCLUSIONS: For the first time, we show the power of combining RNA taxonomic profiling and host gene expression signatures for microbial identification. Our approach not only identifies microbes from metagenomic data, but also adds support to these inferences by determining if the host is mounting a response against specific infectious agents. In particular, we show that M. catarrhalis is abundant in asthma patients but not in controls, and that its presence is associated with a specific host gene expression signature

    Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii).

    Get PDF
    As apex predators, pinnipeds are considered to be useful bioindicators of marine and coastal environments. Endemic to a small archipelago in the South Pacific, the Juan Fernandez fur seal (JFFS) is one of the less-studied members of the pinniped family Otariidae. This study aimed to characterize the fecal microbiome of the JFFS for the first time, to establish a baseline for future studies of host-microbial-environment interactions and monitoring programs. During two consecutive reproductive seasons, 57 fecal samples were collected from seven different JFFS colonies within the Juan Fernandez Archipelago, Chile. Bacterial composition and abundance were characterized by sequencing the V4 region of the 16S rRNA gene. The overall microbiome composition was dominated by five phyla: Firmicutes (40% ±24), Fusobacteria (30% ±17), Bacteroidetes (22% ±10), Proteobacteria (6% ±4), and Actinobacteria (2% ±3). Alpha diversity was higher in Tierras Blancas. However, location was not found to be a dominant driver of microbial composition. Interestingly, the strongest signal in the data was a negative association between the genera Peptoclostridium and Fusobacterium, which explained 29.7% of the total microbial composition variability between samples. The genus Peptoclostridium has not been reported in other pinniped studies, and its role here is unclear, with interpretation challenging due to a lack of information regarding microbiome functionality in marine mammals. As a first insight into the JFFS fecal microbiome, these results contribute towards our understanding of the natural microbial diversity and composition in free-ranging pinnipeds

    Draft Genome Sequence of a Multi-Metal Resistant Bacterium Pseudomonas putida ATH-43 Isolated from Greenwich Island, Antarctica

    Get PDF
    Indexación: Web of Science; Scopus.In this report we present the first draft genome sequence of a P. putida strain isolated from the Antarctic continent. The shotgun sequencing strategy, assembly, and subsequent annotation showed that the ATH-43 strain possesses a wide spectrum of genetic determinants involved in heavy metal and antibiotic resistance, apparently to cope with extreme oxidative stress conditions. P. putida ATH-43 genome now forms part of the 65 genomes of this species registered at the NCBI database (September, 2016) and it is highly related with the endophytic strain P. putida W619, which is also resistant to several heavy metals. Further characterization of multi-metal resistant psychrotrophic bacteria such as P. putida ATH-43 will be promising to develop novel strategies for heavy metal bioremediation in low temperature environments. All genome data has been submitted to NCBI.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01777/ful

    Radiation-induced toxicity in rectal epithelial stem cell contributes to acute radiation injury in rectum

    Get PDF
    Indexación ScopusBackground: Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum. Methods: C57Bl6 male mice (JAX) at 24 h were exposed to pelvic irradiation (PIR) to determine the radiation effect in pelvic epithelium. Effect of PIR on Lgr5-positive rectal stem cells (RSCs) was determined in Lgr5-EGFP-Cre-ERT2 mice exposed to PIR. Effect of PIR or clinically relevant fractionated PIR on regenerative response of Lgr5-positive RSCs was examined by lineage tracing assay using Lgr5-eGFP-IRES-CreERT2; Rosa26-CAG-tdTomato mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from Lgr5-EGFP-Cre-ERT2 mice. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Organoids from Lgr5-EGFP-ires-CreERT2-TdT mice were transplanted in C57Bl6 male mice exposed to PIR. Engraftment and repopulation of Lgr5-positive RSCs were determined after tamoxifen administration to activate Cre recombinase in recipient mice. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test. Result: Exposure to pelvic irradiation significantly damaged rectal epithelium with the loss of Lgr5+ve rectal stem cells. Radiosensitivity of rectal epithelium was also observed with exposure to clinically relevant fractionated pelvic irradiation. Regenerative capacity of Lgr5+ve rectal stem cells was compromised in response to fractionated pelvic irradiation. Ex vivo organoid study demonstrated that Lgr5+ve rectal stem cells are sensitive to both single and fractionated radiation. Organoid-based transplantation of Lgr5+ve rectal stem cells promotes repair and regeneration of rectal epithelium. Conclusion: Lgr5-positive rectal stem cells are radiosensitive and contribute to radiation-induced rectal epithelial toxicity. Transplantation of Lgr5-positive rectal stem cells mitigates radiation-induced rectal injury and promotes repair and regeneration process in rectum. © 2021, The Author(s).https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-02111-

    PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples.

    Get PDF
    BACKGROUND: Recent innovations in sequencing technologies have provided researchers with the ability to rapidly characterize the microbial content of an environmental or clinical sample with unprecedented resolution. These approaches are producing a wealth of information that is providing novel insights into the microbial ecology of the environment and human health. However, these sequencing-based approaches produce large and complex datasets that require efficient and sensitive computational analysis workflows. Many recent tools for analyzing metagenomic-sequencing data have emerged, however, these approaches often suffer from issues of specificity, efficiency, and typically do not include a complete metagenomic analysis framework. RESULTS: We present PathoScope 2.0, a complete bioinformatics framework for rapidly and accurately quantifying the proportions of reads from individual microbial strains present in metagenomic sequencing data from environmental or clinical samples. The pipeline performs all necessary computational analysis steps; including reference genome library extraction and indexing, read quality control and alignment, strain identification, and summarization and annotation of results. We rigorously evaluated PathoScope 2.0 using simulated data and data from the 2011 outbreak of Shiga-toxigenic Escherichia coli O104:H4. CONCLUSIONS: The results show that PathoScope 2.0 is a complete, highly sensitive, and efficient approach for metagenomic analysis that outperforms alternative approaches in scope, speed, and accuracy. The PathoScope 2.0 pipeline software is freely available for download at: http://sourceforge.net/projects/pathoscope/

    PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples.

    Get PDF
    BACKGROUND: Recent innovations in sequencing technologies have provided researchers with the ability to rapidly characterize the microbial content of an environmental or clinical sample with unprecedented resolution. These approaches are producing a wealth of information that is providing novel insights into the microbial ecology of the environment and human health. However, these sequencing-based approaches produce large and complex datasets that require efficient and sensitive computational analysis workflows. Many recent tools for analyzing metagenomic-sequencing data have emerged, however, these approaches often suffer from issues of specificity, efficiency, and typically do not include a complete metagenomic analysis framework. RESULTS: We present PathoScope 2.0, a complete bioinformatics framework for rapidly and accurately quantifying the proportions of reads from individual microbial strains present in metagenomic sequencing data from environmental or clinical samples. The pipeline performs all necessary computational analysis steps; including reference genome library extraction and indexing, read quality control and alignment, strain identification, and summarization and annotation of results. We rigorously evaluated PathoScope 2.0 using simulated data and data from the 2011 outbreak of Shiga-toxigenic Escherichia coli O104:H4. CONCLUSIONS: The results show that PathoScope 2.0 is a complete, highly sensitive, and efficient approach for metagenomic analysis that outperforms alternative approaches in scope, speed, and accuracy. The PathoScope 2.0 pipeline software is freely available for download at: http://sourceforge.net/projects/pathoscope/
    • …
    corecore