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RESEARCH ARTICLE Open Access

Integrating microbial and host transcriptomics
to characterize asthma-associated microbial
communities
Eduardo Castro-Nallar1,5*, Ying Shen2, Robert J. Freishtat3, Marcos Pérez-Losada1,3,4, Solaiappan Manimaran2,
Gang Liu2, W. Evan Johnson2 and Keith A. Crandall1*

Abstract

Background: The relationships between infections in early life and asthma are not completely understood. Likewise,
the clinical relevance of microbial communities present in the respiratory tract is only partially known. A number of
microbiome studies analyzing respiratory tract samples have found increased proportions of gamma-Proteobacteria
including Haemophilus influenzae, Moraxella catarrhalis, and Firmicutes such as Streptococcus pneumoniae. The aim of
this study was to present a new approach that combines RNA microbial identification with host gene expression to
characterize and validate metagenomic taxonomic profiling in individuals with asthma.

Methods: Using whole metagenomic shotgun RNA sequencing, we characterized and compared the microbial
communities of individuals, children and adolescents, with asthma and controls. The resulting data were analyzed by
partitioning human and microbial reads. Microbial reads were then used to characterize the microbial diversity of each
patient, and potential differences between asthmatic and healthy groups. Human reads were used to assess the
expression of known genes involved in the host immune response to specific pathogens and detect potential
differences between those with asthma and controls.

Results: Microbial communities in the nasal cavities of children differed significantly between asthmatics and controls.
After read count normalization, some bacterial species were significantly overrepresented in asthma patients (Wald test,
p-value < 0.05), including Escherichia coli and Psychrobacter. Among these, Moraxella catarrhalis exhibited ~14-fold over
abundance in asthmatics versus controls. Differential host gene expression analysis confirms that the presence of
Moraxella catarrhalis is associated to a specific M. catarrhalis core gene signature expressed by the host.

Conclusions: For the first time, we show the power of combining RNA taxonomic profiling and host gene expression
signatures for microbial identification. Our approach not only identifies microbes from metagenomic data, but also
adds support to these inferences by determining if the host is mounting a response against specific infectious agents.
In particular, we show that M. catarrhalis is abundant in asthma patients but not in controls, and that its presence is
associated with a specific host gene expression signature.

Background
The human microbiome [1] plays a key role in a variety of
human health issues from obesity [2] to respiratory disease
[3]. As we advance our understanding of the diversity of
microbiomes across geography, time, individuals, and tis-
sues within individuals, we become better positioned to
take advantage of this growing wealth of information on

the diversity of the human microbiome and how that diver-
sity changes with infection and disease. Early studies capi-
talized on 16S ribosomal data for bacterial characterizations
because of the ease of data collection and the robust and
growing reference databases. However, with the declining
costs of high-throughput sequencing (HTS) and the limita-
tions of single gene inferences, microbiome studies are
increasingly relying on shotgun metagenomics to obtain
more complete profiles of microbial communities. An
immediate concern is the sheer volume of data generated
by the metagenomics approach, which presents novel
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challenges for efficient data handling and analysis. These
challenges are especially acute when attempting to identify
relevant microbes for suspected infections — trying to dif-
ferentiate microbes relevant to the host from microbes that
do not elicit a response from the host is a daunting task. A
variety of techniques have been developed to isolate poten-
tial pathogens for HTS targets using molecular biological
approaches. However, this limits the inferences with respect
to the host response. Other approaches, for instance, dual
RNA-Seq has been recently suggested as a promising
approach to assess differential gene expression in both the
pathogen and the host from the same sample [4].
Microbiome studies of human disease typically focus on

correlates between microbial composition and disease
phenotype at single or multiple points in time. However,
this poses significant problems when it comes to elucidat-
ing potentially causal relationships. The lingering question
is whether disease results in a certain microbiome or
whether this microbiome is the underlying cause of the
disease. Prospective studies have attempted to establish
causality relationships by monitoring microbial popula-
tions before and after the onset of disease. In the case of
asthma, prospective studies have identified H. influenzae,
M. catarrhalis, and S. pneumoniae colonization as poten-
tial risks factors [5]. Colonization with these three bacter-
ial species has also been linked to the development of
severe pulmonary infections, however this association has
only been seen in children that did not develop asthma
[6]. In addition, the lung microbiome project and others
have proposed a core pulmonary microbiome of healthy
individuals that includes genera such as Streptococcus,
Haemophilus, and Pseudomonas (same order as M. catar-
rhalis), which casts a shadow on elucidating the role of
such bacterial species in asthma [7–9].
Here, we present a computational strategy – combining

RNA microbial identification and host differential gene ex-
pression signatures – to identify pathogens associated with
asthma in children and supported by differences in the
patients’ responses to infection (host immune response-
related gene expression signatures). We tested whether
microbial composition (viral, fungal, and bacterial) is
significantly different between asthma individuals and
controls, and whether differentially abundant microbes
with available host gene signatures are associated to
genes related to the immune response by the host.

Methods
Sample collection
Participants were part of the AsthMaP (Asthma Severity
Modifying Polymorphisms) Project (Table 1). The AsthMaP
Project was a single-center observational study of asthma.
AsthMaP participants ranged between the ages of 6 and
20 years, with physician-diagnosed asthma for at least one
year prior to the time of recruitment from the emergency

department, inpatient units and outpatient clinics. Individ-
uals who reported a medical history of chronic or complex
cardiorespiratory disease were ineligible. Control subjects
were confirmed not to have asthma through negative re-
sponse to multiple survey questions for asthma diagnosis,
symptoms, medication use, and healthcare utilization. Spe-
cific AsthMaP methodology has been published elsewhere
[10–13]. Our Institutional Review Board approved this
study and parents and participants gave consent/assent.
Nasal epithelial cells were collected from 8 children

and adolescents with asthma and 6 healthy controls by
brushing the medial aspect of the inferior turbinate of
each nare using a cytology brush. Nasal samples are an
accepted surrogate for bronchial samples [14] that have
the advantage of being acquired using minimally invasive
techniques. This sampling technique allows for ethical
collection from the full range of asthma severity, includ-
ing youth with mild asthma, and healthy controls.
Samples were collected from fresh tissues and macerated

using sterilized plastic tips in 1.5 mL sterile tubes. Samples
in Trizol were frozen immediately at −80 until a later date
for batch RNA extraction and processing. Total RNA was
extracted using Trizol reagent (Life Technologies) and the
resulting lysate was used for affinity RNA purification in sil-
ica columns following manufacturer’s instructions (Norgen
Biotek). RNA quality was assessed by measuring 260/280
absorbance ratio and by integrating proportions of RNA
using microchip electrophoresis on Agilent Bioanalyzer
2100 RNA 6000 nanochips (Agilent, Palo Alto CA). Sam-
ples with an RNA Integrity Number value greater than
five were used for subsequent analysis. Total RNA was
subjected to RiboZero ribosomal RNA reduction prior to
library preparation using Illumina TrueSeq Stranded Total
RNA kit (San Diego, CA) and sequenced on a HiSeq
2500 instrument on two separate ‘Rapid’ flow cells. This

Table 1 Demographic data from asthma and control subjects

Variable Asthma (n = 8) Control (n = 6)

Mean (95 % CI) Mean (95 % CI)

Gender, % male 75 83

Age, years, median (range) 11 (6, 17) 15 (10, 20)

FEV1 (% change with
bronchodilator), median (range)

3.5 (−13, 10) N/A

Post-bronchodilator FEV1
(% predicted), median (range)

97 (62, 107) N/A

FEF25–75 (% predicted),
median (range)

83 (28, 112) N/A

Post-bronchodilator FEF25–75
(% predicted), median (range)

93 (37, 110) N/A

Serum IgE, IU/mL, median (range) 247 (60, 1706) N/A

Blood eosinophils, %, median (range) 6 (2, 14) N/A

ACT score, median (range) 23 (17, 23) N/A

FEV1 Forced Expiration Volume, FEF Forced Expiratory Flow, ACT Asthma
Control Test. N/A = information not available
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generated an average of 41.4 million single-end 100 bp
sequencing reads per sample. Sequence data was deposited
in the Sequence Read Archive and can be found under the
BioProject [SRA: PRJNA255523].

Analyses
Reads were preprocessed using PRINSEQ-lite 0.20.4
and FastQC 0.10.1 (trimming reads and bases < 25
PHRED, removing exact duplicates, reads with undeter-
mined bases, and low complexity reads using Dust
filter = 30) [15]. We constructed a ‘target’ genome
library containing all bacterial, fungal, and viral sequences
from the Human Microbiome Project Reference Database
(http://www.hmpdacc.org/reference_genomes/reference_
genomes.php) using the PathoLib module from Patho-
Scope 2.0 [16]. We aligned reads to these libraries using
the Bowtie2 algorithm [17], and then filtered any reads that
also aligned to the human genome (hg19) as implemented
in PathoMap (−−very-sensitive-local -k 100 –score-
min L,20,1.0). In these samples, an average of 1.8 million
reads (9.1 %; range: 4.8 %-16.72 %) per sample aligned to
the target libraries before filtering the human genome. We
then applied PathoScope 2.0 – specifically the PathoID
module – to characterize the microbial communities in
each patient.
Exploratory analysis and differential species abundance

testing were performed in R 3.1.2 and Bioconductor 3.0
[18, 19] using packages xlsx 0.5.7, gtools 3.4.1, CHNOSZ
1.0.3.1, plyr 1.8.1, ggplot2 1.0.0, reshape2 1.4.1, gplots
2.16.0, Phyloseq 1.10.0, and DESeq2 1.6.3 [20–28]. Briefly,
various indices (Observed, Chao1, Shannon, Simpson)
were obtained using the plot_richness function of the
PhyloSeq package and beta diversity was obtained using
the R base package [19, 26]. Numbers of mapped reads
were normalized across all samples using the variance sta-
bilizing transformation method [27, 28]. Relative differ-
ences between groups were tested using a Wald test (with
Cook’s distance correction for outliers) and adjusted by
applying the Benjamini-Hochberg method to correct for
multiple hypotheses testing at alpha = 0.05 [29, 30]. Taxa
whose base number of normalized reads was less than 50
were not considered. Principal coordinate analysis (PCoA)
was performed on a Jensen-Shannon distance matrix de-
rived from read counts aggregated by genus as estimated
in PathoScope.
For gene differential expression analysis, we aligned

the dataset to the human genome using TopHat v2.0.6
[31] and estimated the expressed gene abundance using
Cufflinks v2.1.1 [32] represented as fragments per kilo-
base of exon per million fragments mapped (under de-
fault parameters). Since M. catarrhalis was detected
with high proportion of mapped reads in 5/8 asthma
samples while with low proportion of mapped reads in
all of the control samples, we further evaluated the host

response gene expression signature of M. catarrhalis in
these samples. In a previous study, a list of differential
expressed genes (77 genes) was identified in the re-
spiratory tract epithelial cells in response to adherent
M. catarrhalis BBH18 [33]. We applied an adaptive
Bayesian factor analysis approach as implemented in
the ASSIGN toolkit from Bioconductor [34]. We esti-
mated the strength of M. catarrhalis host gene expres-
sion signature onto the samples in our dataset to
determine whether this signature is present in the
tissue samples of asthma and control samples [16].
For this analysis we used the following parameters: [adapti-
ve_B =TRUE, adaptive_S = TRUE, mixture_beta = TRUE,
p_beta = 0.001, iter = 2000, burn_in = 1000, theta0 = 0.05,
theta1 = 0.9].

Results and discussion
To our knowledge, this is the first study reporting the
use of shotgun RNA sequencing for microbial identifica-
tion and differential host gene expression. Throughout
this study we refer to microbial composition as the com-
bined effect of the presence of a certain microbe and its
gene expression. The advantage of this strategy is that
measures of relative abundance are related to the actual
activity or expression of a microbe at a given point in
time instead of to the census number of a microbe.
Additionally, it allows for the interrogation of the host
transcriptomes or specific gene signatures from the same
sequence dataset. Franzosa et al. showed that metage-
nomic and metatranscriptomic genes and/or species
abundance do not necessarily correlate [35], meaning
that species’ relative abundances reported in this study
represent actual activity or expression of microbes, and
might not correlate to relative abundance from shotgun
DNA experiments.

Asthma microbial communities are less diverse than
controls
We performed analyses of alpha and beta diversity to assess
species richness and evenness within and among samples
(Fig. 1 and b). We obtained estimates of various indices to
characterize the richness and heterogeneity of the samples
partitioned by asthma and control samples (Observed,
Chao1, Shannon, Simpson). Observed and Chao1 are mea-
sures of species richness (number of species); the latter
including a correction for unobserved species [36, 37]. In
turn, Shannon and Simpson incorporate relative species
abundance and thus represent Evenness or Heterogeneity
[38]. We observed that asthma samples have more species
(richer) compared to control individuals (Fig. 1a; Observed
and Chao1). However, measures that explicitly model
Evenness (Shannon and Simpson indices) suggest that asth-
matic samples are dominated by fewer species (5 of 8 cases
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dominated by Moraxella catarrhalis; Fig. 1a; Fig. 2) and are
thus less diverse than controls.
Decreased microbial diversity have also been observed

in other human diseases [39–41], although increased
diversity in diseased patients has also been noted [42]. In
asthma studies, bacterial diversity, as surveyed by 16S
rRNA amplicon sequencing and 16S microarray typing,
exhibits an opposite trend to bronchial and induced spu-
tum samples, i.e., asthma samples are more diverse than
controls [43, 44]. In addition, other studies have not de-
tected significant differences among asthma samples and
controls [9, 45]. The discordance between our results and
previous studies might arise from two sources. We used
shotgun RNA sequencing instead of marker-based ap-
proaches. The shotgun approach is more comprehensive
(virus, bacteria, fungi); thus, it is likely that we sampled
the microbiome more extensively. In addition, our esti-
mates might not be directly comparable as we measure
abundance as a composite of the product of microbial
gene expression and census numbers, i.e., we sampled spe-
cies that were expressing genes vs. sampling species that
were present. Secondly, we sampled a surrogate of bron-
chial samples, i.e., the nasal cavity of children and adoles-
cents (Table 1), and other studies have directly sampled
the lower respiratory tract of adults and children.
Regarding among-sample relatedness, we observe that

the five samples where M. catarrhalis is relatively more
abundant tend to differentiate from controls (PCoA; 95 %
of variance), while asthma samples with low levels of M.
catarrhalis tend to cluster with controls (Fig. 1b). Interest-
ingly, the latter three samples also exhibit the lowest pro-
portion of M. catarrhalis, and two of them exhibit no host
response to M. catarrhalis-associated genes (below; Fig. 4;
P001 and P005). Recently, Goleva et al. found no

differences either in diversity or composition in patients
with corticoid-sensitive or resistant phenotypes compared
to controls in samples without M. catarrhalis [45]. This
suggests that asthma microbiomes where M. catarrhalis is
not detected resemble those of control individuals, how-
ever we do not discard the possibility that another uniden-
tified microbe is driving this apparent similarity.

Microbial identification and relative abundance in asthma
and control communities
The resulting composition differed significantly between
the cases and controls at the species level, with 5 of the 8
cases showing high (more than 50 % of mapped reads)
prevalence of the bacterial species M. catarrhalis (Fig. 2;
check Additional File 1 for raw counts). Other abundant
species in asthma samples were Corynebacterium accolens,
and C. tuberculostearicum. However, these were also found
in high abundance in control samples (Fig. 2). Corynebac-
terium spp. have been detected in sinus nasal studies of
healthy individuals as well as in cases of rhinitis and rhino-
sinusitis, where their prevalence nears 100 % and their
abundance is relatively high [46–48].
When we formally test for differential relative abun-

dance, we observed a log2–based effect size of 3.8 for M.
catarrhalis, i.e., this species is on average 14 times more
abundant in children with asthma than controls (Fig. 3a).
These findings build on previous metagenomic surveys
using 16S rRNA, which found increased proportions of
Proteobacteria in cases but not controls, speculating that
this could be explained by Moraxella spp. and Hemophilus
spp. [9]. M. catarrhalis is a pathogen associated with pneu-
monia in early childhood [49], and airway colonization
shortly after birth with M. catarrhalis, along with H. influ-
enzae, and S. pneumonia, is associated with later asthma

Asthma Control

C
o

m
p

o
n

en
t 

2 
(1

5%
 o

f 
va

ri
an

ce
)

Component 1 (80% of variance)

Asthma
Control

Asthma Control Asthma Control Asthma Control

BA

A
lp

h
a 

D
iv

er
si

ty
 M

ea
su

re

Observed Chao1 Shannon Simpson

1

3

Fig. 1 Alpha and beta diversity for asthma and control samples as estimated by different distance metrics. a Alpha diversity measures show
controls are more diverse than asthma individuals in metrics that account for evenness, however in asthma individuals we observed more
species. Observed = observed diversity; Chao1 = Chao estimator; Shannon = Shannon diversity index; Simpson = Simpson diversity index.
b Multidimensional scaling using principal coordinate analysis (PCoA). Coordinates 1 and 2 explain 95 % of the observed variance

Castro-Nallar et al. BMC Medical Genomics  (2015) 8:50 Page4of9



development [5] and with wheezy episodes in young chil-
dren [50].
We also detected Escherichia and Psychrobacter

(Family: Moraxellaceae) to be significantly more abun-
dant in asthma samples than controls, both members
of the human microbiome [51, 52]; yet in low quan-
tities (Fig. 3b; 65 and 55 reads, respectively). While we
detected H. influenzae, Streptococcus spp., and Staphylo-
coccus spp. in asthma samples, their abundance was not
significantly different between asthma and control samples
(p-value > 0.05; check Additional File 2 for R code). We
also found Anaerococcus prevotii, member of the normal
microbiome of the skin, oral cavity and the gut, to be rela-
tively less abundant in asthma samples (Fig. 3a-b; 57 reads
on average). These findings, i.e., more Proteobacteria and
less Firmicutes in asthma, are in agreement with other
reports [9, 44].

Host gene expression validates microbial community
profiling
While identifying pathogenic species of a distinct airway
microbiome in cases but not in controls is suggestive

evidence to implicate an agent for disease, we wanted to
further validate this conclusion by examining the host re-
sponse to M. catarrhalis. Because our starting nucleic acid
material is RNA from human epithelial cells, the majority
of the sequencing reads are of human origin (>95 % map-
ping to human genome; ~75 % mapping to human tran-
scriptome). Thus, we can capitalize on these data to
examine host response gene expression through these tran-
scriptomic data. We obtained a set of 77 genes that were
previously associated with the immune response to M. cat-
arrhalis infection in respiratory tract epithelial cells [33] of
which 32 gene names were found in our dataset. We fit this
M. catarrhalis host response gene expression signature
onto our asthma and control samples (Fig. 4a). None of the
controls expressed the M. catarrhalis response signature
(Fig. 4b). For the eight asthma samples, five exhibited a high
M. catarrhalis signature strength. These five samples in-
cluded the samples with the four highest scoring read pro-
portions from PathoScope. Samples with high proportion
of M. catarrhalis exhibited increased expression of media-
tors of inflammation (e.g., CCL20; IL1A; IRAK2) and apop-
tosis (e.g., TNF; C8orf4; Fig. 4a).
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Additionally, signature strength and read map pro-
portions are in concordance for the majority (4 out of
5) of the patient samples (Fig. 4b, c). However, there
was one discordant sample with a very low M. catar-
rhalis read proportion (0.02) that scored very high
with respect to the gene expression signature (P003 in
Fig. 4c). In this sample, we did identify 281 reads from
Moraxella spp., indicating that we could still be observ-
ing a true host response. Alternatively, this could be a
false positive due to lack of specificity in the signature.
For instance, in sample P003, we also detected 5249
reads for Corynebacterium, representing ~0.3 proportion
of mapped reads. We did not find a specific signature for
Corynebacterium in the literature, however, species in this
genus are known to trigger inflammation in the nasal cav-
ity and sinuses, which might explain the strong pro-
inflammatory response [46, 53]. Altogether, this illustrates
the future need for developing a multi-signature approach
(i.e., immune response caused by multiple pathogens) that
can distinguish between related response signatures. The
other two asthma samples (P001 and P005) with no de-
tectable signature for Moraxella showed 304 and 1490M.
catarrhalis normalized reads (6 and 12 %, respectively).
In agreement with our findings, Følsgaard et al. (2014)

detected local inflammation markers in nasal mucosal
lining fluid samples of neonates after colonization by M.
catarrhalis, which might lead to the establishment of
chronic inflammation [54].

Conclusions
Our study demonstrates the efficacy of combining mi-
crobial identification and host gene signatures for micro-
bial characterization under asymptomatic conditions. In
a single shotgun RNA experiment, our integrative ap-
proach shows the dominating presence of M. catarrhalis
in the airways of asthmatic children and the strength of
the host immune response against it. This suggests that
the airways of asthmatics are chronically inflamed, which
may be associated with their ability to respond against
opportunistic infections.
While the small sample size of our study, the small

number of gene signatures available, and the need for
a multi-signature approach render our results as pre-
liminary, we show that our approach simultaneously
characterizes the diversity of microbial communities
(bacteria, fungi and viruses), and the differential ex-
pression of loci from the host in response to an in-
fection. Such a dual approach allows for robust
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diagnosis in human health and has a direct and broad
applicability in epidemiological, ecological, and medical
studies. Future development of multi-species signature
statistical approaches along with the availability of more
gene signatures will strengthen microbial detection by
RNA microbial profiling and host differential gene
expression.

Additional files

Additional file 1: Spreadsheet with taxonomy of species detected
and their abundances as read counts. (XLSX 143 kb)

Additional file 2: OTU and taxonomy tables, metadata, and R code
for analysis of differential abundance. (ZIP 32 kb)
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Fig. 4 a Heatmap of Moraxella catarrhalis signature genes distinguishes the asthma samples from the controls. The color scale goes from blue
(low expression) to red (high expression). b, c The Moraxella catarrhalis signature strengths are highly concordant with the PathoScope read
proportions in control and asthma samples with the exception of sample P003
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