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METHODOLOGY Open Access

PathoScope 2.0: a complete computational
framework for strain identification in
environmental or clinical sequencing samples
Changjin Hong1*†, Solaiappan Manimaran1†, Ying Shen1, Joseph F Perez-Rogers1,2, Allyson L Byrd2,
Eduardo Castro-Nallar3, Keith A Crandall3 and William Evan Johnson1,2*

Abstract

Background: Recent innovations in sequencing technologies have provided researchers with the ability to rapidly
characterize the microbial content of an environmental or clinical sample with unprecedented resolution. These
approaches are producing a wealth of information that is providing novel insights into the microbial ecology of
the environment and human health. However, these sequencing-based approaches produce large and complex
datasets that require efficient and sensitive computational analysis workflows. Many recent tools for analyzing
metagenomic-sequencing data have emerged, however, these approaches often suffer from issues of specificity,
efficiency, and typically do not include a complete metagenomic analysis framework.

Results: We present PathoScope 2.0, a complete bioinformatics framework for rapidly and accurately quantifying
the proportions of reads from individual microbial strains present in metagenomic sequencing data from
environmental or clinical samples. The pipeline performs all necessary computational analysis steps; including
reference genome library extraction and indexing, read quality control and alignment, strain identification, and
summarization and annotation of results. We rigorously evaluated PathoScope 2.0 using simulated data and data
from the 2011 outbreak of Shiga-toxigenic Escherichia coli O104:H4.

Conclusions: The results show that PathoScope 2.0 is a complete, highly sensitive, and efficient approach for
metagenomic analysis that outperforms alternative approaches in scope, speed, and accuracy. The PathoScope
2.0 pipeline software is freely available for download at: http://sourceforge.net/projects/pathoscope/.

Background
The rapid and accurate characterization of microbial
flora in clinical or environmental samples is critical for
many applications including understanding the role of
the microbiome in human health, personalized responses
to acute or chronic infections, and early detection in
disease outbreaks. With the steadily increasing number
of microbial genomes available in public data repositories,
metagenomic characterization using high-throughput se-
quencing techniques can be used to catalogue microbes
co-habituating in human systems [1] and to rapidly identify
pathogens responsible for infectious disease outbreaks

[2-4]. This proliferation of metagenomic sequence data has
resulted in the development of novel analytical approaches.
Feature selection approaches exploit features from genomic
patterns or composition [5,6], preserved sequence segments
[7-9] or predetermined clade markers [10,11]. Assembly-
based methods [12-15] have recently gained in popularity
due to their increased sensitivity for strain identification.
However, these approaches can suffer from issues of specifi-
city, efficiency, and typically do not include a complete
metagenomic analysis framework with reference library
generation, read quality control, and reporting.
Here we present a complete framework for rapid and

accurate metagenomic profiling at the subspecies level
that overcomes the limitations of other approaches. In
our previous work, we developed a statistical algorithm
(formerly PathoScope 1.0 and henceforth denoted as the
PathoID module of the PathoScope 2.0 framework) to
reassign ambiguously aligned sequencing reads and
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accurately estimate read proportions from each genome
in the sample [16]. In PathoScope 2.0, we have intro-
duced performance improvements to the PathoID algo-
rithm such as better utilization of alignment scores, the
inclusion of reference length and alignment quality into
the reassignment model, and the addition of flexible
priors for the read proportions and ambiguity penalties.
In addition, PathoScope 2.0 extends the PathoID module
into a complete workflow for analyzing data from clin-
ical or environmental sequencing samples, with novel
modules that: (1) automatically extract custom reference
genome libraries for microbial or host genomes (PathoLib);
(2) construct reference indices, align reads, and filter reads
that align to the host (PathoMap); (3) conduct complete,
parallel read quality processing (PathoQC); (4) annotate
all sequences in the reference library with information
such as organism name, taxonomic lineage, and gene loci
(PathoDB); and (5) provide detailed reports on organisms,
read coverage, genes, and gene products identified in the
study (PathoReport). The modular PathoScope 2.0 frame-
work minimizes interaction for users with weaker computa-
tional backgrounds, while providing experienced users the
flexibility to conduct analysis steps outside of the pipeline
and to develop new plug-in modules.

Results and discussion
New features in Pathoscope 2.0
With the introduction of PathoScope 2.0, we improve our
previous PathoID algorithm for strain identification [16]
and we extend our software into a complete framework for
the analysis of metagenomic sequencing data. PathoScope
2.0 (Figure 1) currently consists of four core pipeline mod-
ules (PathoLib, PathoMap, PathoID, and PathoReport) and
two optional ‘plug-in’ modules (PathoDB and PathoQC),
with capability for seamless interaction with other metage-
nomic tools and for the development of future plug-in
modules to increase the usability of the pipeline. Below are
detailed descriptions of the novel features that are intro-
duced in PathoScope 2.0:

PathoLib: Automatic reference library extraction
The careful selection of a refined reference sequence
library is crucial for all downstream analyses. The Patho-
Lib module allows the user to automatically generate
custom reference genome libraries for specific scenarios
or datasets. The user supplies a set of NCBI taxonomy
identification (taxID) numbers for organisms to be in-
cluded in the library (Figure 2). The user can construct
both a ‘target library’ (that is, pathogen genomes of interest)
and a ‘filter library’ (for example, host genome or
benign flora) for later use in the PathoMap module.
The PathoLib module will extract all sequences in the
NCBI nucleotide database associated with the taxIDs
(for example, complete genomes, transcripts, plasmids,

partially assembled fragments, and so on). In addition,
if a high-level taxID is given (for example, kingdom,
family, genus), PathoLib can also optionally extract all
lower level sequences in the NCBI taxonomy tree. As
PathoLib extracts the reference library, the NCBI Gen-
eInfo number is linked to the taxID, and the taxID and
organism name are appended to the sequence headers
to further link sequences in downstream analyses.

PathoMap: Efficient read alignment and filtering
The PathoMap module aligns reads to the target library
and removes any sequences that align with an equal or
greater score to the filter library (Figure 3). Inputs for this
module are the raw read file (FASTQ) and both the target
and filter reference libraries (FASTA format). PathoMap
will: (1) index the reference library (splitting the library into
multiple indices if necessary); (2) align the reads to the
target library; and (3) filter any of the target-matching reads
that also match the filter library. The current version of
PathoMap includes a Bowtie 2 [17] wrapper (see Figure 3)
with predetermined optimal alignment parameters for dif-
ferent read generation technologies (for example, Illumina:
‘–very-sensitive -k 100 –score-min L,-0.6,-0.6’; PacBio:
‘–very-sensitive -k 100 –score-min L, -0.6, -1.5’). The mod-
ule also allows flexibility for the user to manually input
Bowtie 2 parameters, or to conduct any part of the align-
ments outside the PathoMap framework by supplying an
alignment file in SAM format (Li et al., [18]). Finally, the
module is constructed in a way that wrappers for additional
alignment algorithms can easily be substituted for the Bow-
tie 2 wrapper to accommodate diverse user preferences.

PathoID: Reassignment of ambiguous reads
The PathoID module (Figure 4) comprises our previous
PathoScope 1.0 software, which utilizes a penalized stat-
istical mixture model that reassigns all ambiguous reads
to the most likely source genome in the library [16].
PathoID takes as input either a SAM or BLAST (format
8) alignment file, and reassigns the reads to the most
likely genome of origin. The PathoID module also in-
cludes three important performance improvements to
the original PathoScope approach: (1) improving the
utilization of alignment scores; (2) including both reference
length and read alignment quality into the reassignment
model; and (3) the addition of user-defined priors for read
proportions and ambiguity penalties (See Materials and
Methods for details). These improvements increase the
number of reads that are correctly assigned to the source
genome, reduce the number of false positive genomes iden-
tified, and allow PathoID to better handle cases where the
reference is not fully assembled or the sample contains
multiple substrains of the same species. PathoID produces
an updated alignment file of read reassignments and a
summary report containing genome-level read proportions.
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PathoReport: Detailed result reporting and annotation
The PathoReport module (Figure 5) outputs two files from
the pipeline. The first output file is a tab-delimited (.tsv) re-
port that contains the genomes that were identified by the
previous steps sorted by rank, along with high/low

confidence read numbers and proportions assigned to each
genome. The second file, in XML format, contains more
detailed results, including the reads assigned to each gen-
ome and contiguous sequences (contigs) constructed from
overlapping reads. In addition, in concert with the plug-in

PathoLib

Raw Sequencing 
Reads
(fastq)

Quality Controlled 
Reads
(fastq)

NCBI nucleotide 
database

(fasta)

Host, Filter, and Target 
Genome Libraries

(fasta)

Filtered Read 
Alignments

(sam)

Reassigned Read 
Alignments

(sam)

Detailed Report
(xml)

2.

PathoMap4.

PathoID5.

PathoReport6.

PathoDB1.

PathoQC3.

PathoDB

Core Module

Optional Module

Modules

1. PathoDB
A mysql database containing taxonomy, gene, and 
protein product annotation for all sequences in the 
NCBI nucleotide database.

2. PathoLib
Allows user to automatically generate custom reference 
genome libraries for specific scenarios or datasets.
 

3. PathoQC
Performs several read quality control steps including 
trimming adapters, trimming low quality bases, and 
filtering low complexity reads.
 

4. PathoMap
Aligns reads to target reference genome library and 
removes sequences that align to the filter and host 
libraries.
 

5. PathoID
Reassigns ambiguous reads, identifies microbial strains 
present in the sample, and estimates proportions of 
reads from each genome.
 

6. PathoReport
Generates reports containing read proportions to each 
genome, organism lineage, gene loci, and protein 
products covered by the reads.

Figure 1 Workflow of the PathoScope 2.0 framework. PathoScope 2.0 consists of four core and two optional analysis modules for metagenomic
profiling. Core modules: PathoLib extracts custom genome reference libraries, PathoMap aligns the reads to the reference library and filters host reads,
PathoID identifies and estimates the proportions from each genome, and PathoReport provides detailed summary reports of the results. PathoDB provides
additional annotation and PathoQC can be used to preprocess the reads prior to alignment.
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module PathoDB (described below), PathoReport will
add additional annotation into the report such as
organism lineage, gene loci, and protein products for
genes covered by the reads. This XML output provides
useful information for evaluating the quality of the
results and facilitating downstream interpretation and
analysis. For example, the specific reads assigned to a
genome can be an important quality check for a meta-
genomic analysis to check if the reads are low

complexity or contain multiple PCR duplicates. The
contigs show the breadth of genomic coverage, can
identify sequence variation from the reference, and facilitate
scaffold-based genome assembly. The gene annotations
identify the specific genes covered by the reads, can be use
to annotation SNPs in specific genes, and (in RNA-seq
studies) can identify which pathogenic genes are actively
expressed. Examples of PathoReport XML files are given in
Additional file 1.

Figure 2 PathoLib module workflow. The PathoLib module will extract a reference library containing all genomes, chromosomes, transcripts,
and other sequence fragments in the NCBI redundant nucleotide database associated user-defined taxonomic clade (NCBI taxID). If a higher-level
taxID is given, PathoLib will optionally extract all sequences from lower-lever taxonomic designations based on the NCBI taxonomy tree.
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Optional plug-in modules
The PathoScope 2.0 framework was constructed to easily
add modules to the pipeline. Currently, there are two avail-
able add-in modules: PathoQC and PathoDB. PathoQC is a
read quality control module that performs several steps

including trimming adapters, trimming low quality bases,
and filtering low complexity sequences. PathoDB is a
module consisting of taxonomy, gene, and protein
product annotation for all sequences in the NCBI nu-
cleotide database (Figure 6). In PathoDB, we have pre-

PathoLib

PathoID PathoReport

Bowtie2
Wrapper

Bowtie2
Wrapper

PathoMap
Filter

Target or 
Pathogen Library 

(fasta)

Target Aligned 
Reads
(fastq)

Filter or 
Host Library

(fasta)

Target Alignment
(sam)

Filter Alignment
(sam)

Filtered Alignment
(sam)

Quality Controlled 
Reads 
(fastq)

Step 1: Build reference genome indices

Step 2: Read alignment

Target Lib A
(8.6 Gb)

Split Library
> 4.3 Gb

Build Bowtie2
Indices

Merge sam
Files

Target Lib A1
(4.3 Gb)

Target Lib A2
(4.3 Gb)

Target Lib B
(4.3 Gb)

Reads
(fastq)

Indices Alignment Output

+ Lib A1 Bowtie2 sam

+ Lib A2 Bowtie2 sam

+ Lib B Bowtie2 sam

PathoLib PathoQC Optional ModuleCore Module

Figure 3 PathoMap module workflow. The PathoMap module aligns reads to the target library and removes any sequences that align to the
filter library. PathoMap will: (1) index the reference library; (2) align the reads to the target library; and (3) filter any of the target-matching reads
that also match the filter library. The current version of PathoMap includes a Bowtie 2 wrapper and allows users can conduct any part of the
alignments outside the PathoMap framework.

PathoID

Updated Alignment File (sam)

ti|904343|org|S_epidermis_VCU127|gi|41868372

ti|904343|org|S_epidermis_VCU127|gi|41868370

ti|904343|org|S_epidermis_VCU127|gi|41868371

ti|904343|org|S_epidermis_VCU127

ti|176280|org|S_epidermis_ATCC|gi|27466918

ti|176280|org|S_epidermis_ATCC

ti|904343|org|S_epidermis_VCU127|gi|41868372

ti|904343|org|S_epidermis_VCU127|gi|41868370

ti|904343|org|S_epidermis_VCU127|gi|41868371

ti|176280|org|S_epidermis_ATCC|gi|27466918

Genomes with common taxon IDs 
are treated as the same organism

Step 1:

Ambiguously aligned reads are 
remapped to most probable 
genome of origin

Step 2:

Reference Genome Read with only one alignment Read with ambiguous alignment

Alignment File (sam) Read Reassignment Algorithm

PathoMap PathoReport

Figure 4 PathoID module workflow. The PathoID utilizes a penalized statistical mixture model to reassign ambiguous reads to the most likely
source genome. The PathoID module also includes performance improvements to the originally published reassignment approach (PathoScope
1.0), by allowing users to calibrate prior information, better utilize alignment scores, and by including reference length and read alignment quality
into the reassignment.
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compiled an annotation database containing informa-
tion including organism name, lineage, NCBI GenInfo
identifier, gene and exon locations, and protein prod-
ucts for all sequences in the NCBI nucleotide database.
This information was assembled from 560 GB of anno-
tation from the NCBI GenBank, RefSeq, and Third-

Party Annotation resources (ftp://ftp.ncbi.nih.gov/).
The PathoDB module automatically interacts with
PathoReport to provide additional annotation in the
detailed XML report. The compiled database is avail-
able for download from the PathoScope distribution
webpage (http://sourceforge.net/projects/pathoscope/). In
order to utilize PathoDB and automatically extract the data-
base information in PathoReport, the user needs a MySQL
client account or needs to set up a MySQL server. Because
this requires several independent steps for installation, we
have made this module optional.
Future plug-in modules will be added, including add-

itional aligner wrappers, modules for data visualization,
and modules for ‘post-diagnostic’ variant calling, annota-
tion, and genome assembly.

Evaluation of PathoScope 2.0 on simulated and real-data
examples
We rigorously evaluated PathoScope 2.0 using two data-
sets. The first dataset consisted of in silico genomic
sequencing reads simulated from 25 strains of bacteria
that are commonly found in humans which includes five
strains of Escherichia coli, five strains of Staphylococcus
aureus, five strains of Streptococcus pneumoniae, and 10
other commonly occurring human bacterial strains. The
second dataset contained clinical sequencing samples
from the 2011 European outbreak of Shiga-toxigenic E.
coli O104:H4. We demonstrate the improvements in
PathoID 2.0 compared to PathoID version 1.0 in our
simulation study of 25 bacterial strains. Using the clin-
ical samples, PathoScope 2.0 is compared with other
similar pipelines including PathoScope 1.0 for both
accuracy of diagnosis and speed.

Simulation study to evaluate improvements in PathoID 2.0
Our simulated data consisted of five sets of 100,000 sim-
ulated Illumina reads derived from each of the 25 strains
of bacteria (see Methods). First, we processed the reads
for each of the 25 bacterial strains individually using
both PathoID version 1.0 and 2.0 with default parameter
values and also PathoID 2.0 using a highly informative
prior (see Methods). Although PathoID 1.0 was able to
estimate the correct proportions of reads at the species
level (100% to the particular species) for each of these
25 samples, it was not able to estimate the correct pro-
portions of reads at the strain level (100% to the particu-
lar strain) for six samples (Additional file 2). In contrast,
PathoID 2.0 using default parameters estimated the cor-
rect proportions of reads at the strain level (100% to the
particular strain) for all the 25 samples. PathoID 2.0 with
an informative prior estimated the correct proportions
of reads at the strain level (100% to the particular strain)
for 24 of the 25 samples, but was unable to estimate the
correct proportion for one sample with S. aureus N315.

PathoMap

PathoReport

PathoID PathoDB

Filtered Read 
Alignments

(sam)

Reassigned Read 
Alignments

(sam)
-or-

• Organism lineage
• Gene loci
• Protein products

• Read alignments
• Coverage
• Assembly contigs
• Summary Report

XML Report

Figure 5 PathoReport module workflow. The PathoReport
module outputs two report files including: (1) a tab-delimited (.tsv)
report that contains a ranked list of genomes (with proportions)
identified by the pipeline; and (2) an XML file containing detailed
results including the reads assigned to each genome, contigs
constructed from overlapping reads, and so on.

GenBank

PathoLib PathoReport

RefSeq
Third Party
Annotation

For each in NCBI’s nucleotide database:
• Organism name
• Organism lineage
• NCBI gene info identifier
• Gene and exon locations
• Protein products

PathoDB.dmp

Load data into mysql database

Figure 6 PathoDB module workflow. PathoDB is an optional
module of pre-compiled annotation for all sequences in the NCBI
nucleotide database. The PathoDB module automatically interacts
with PathoReport to provide additional annotation in the detailed
(XML) report such as organism lineage, gene loci, and protein
products for any genes covered by the reads.
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The results are consistent for all five sets of simulated
samples.
We also combined all the reads from the 25 strains, to

create a dataset with all bacteria in equal proportions
(expected proportion for each strain: 4%). Again, we
applied both PathoID version 1.0 and 2.0 with default
parameter values and added multiple informative priors
(low, moderate, high; see Methods). We saw marked
improvement in PathoID version 2.0 over version 1.0,
including increased accuracy with informative priors
(Table 1). For the 10 bacterial species that only included
one strain per species, all methods performed well and
estimated the correct read proportions. For the three
species that contained multiple strains (E. coli, S. aureus,
and S. pneumoniae), PathoID 1.0 and 2.0 at default pa-
rameters were able to identify all of the strains present,
but struggled to estimate the correct read proportions. This
failure demonstrates the tendency of the PathoID algorithm
(at default parameters) to identify a single strain for each
species, and if multiple strains or substrains are present it

may reassign too many of the reads to a single strain. This
tendency is an advantage in cases where there is only one
strain of each species in the sample, but it leads to inaccur-
acies in the proportion estimates when multiple strains or
substrains of the same species are present in the sample.
The result of PathoID 2.0 with a highly informative prior
matched closely with the expected proportions for 24 of
the 25 strains, including 14 of the 15 cases with multiple
strains of the same species. This demonstrates the value of
using a highly informative prior when there are multiple
strains of the same species in the sample, but we note that
this comes at reduced effectiveness when there is only a
single strain of each species in the sample. Finally, we re-
peated our simulation study using multiple mixtures of the
25 strains at random proportions, but the results were con-
sistent with the mixtures at equal proportions, that is, the
strains for which the proportions were not accurate with
the mixtures at equal proportions matched with that of the
mixtures at random proportions. Hence, we do not discuss
them in detail here (see Additional file 2).

Table 1 Simulation study results

PathoID 1.0 PathoID 2.0

Organism Default Default ThetaPrior (Low) ThetaPrior (High)

Bacteroides fragilis 638R 4.00% 3.99% 3.99% 3.99%

Bifidobacterium bifidum BGN4 4.00% 3.99% 3.99% 3.99%

Clostridium perfringens ATCC 13124 3.99% 3.99% 3.99% 3.99%

Enterococcus faecalis V583 3.98% 3.99% 3.99% 4.00%

Escherichia coli 042 17.15% 4.01% 4.10% 4.02%

Escherichia coli 55989 0.57% 0.50% 1.51% 3.83%

Escherichia coli SE11 0.28% 10.10% 7.07% 3.74%

Escherichia coli SE15 0.71% 3.43% 3.73% 3.82%

Escherichia coli UMNK88 1.29% 1.95% 3.59% 4.16%

Haemophilus influenzae 10810 3.98% 3.99% 3.99% 3.99%

Neisseria meningitidis MC58 3.25% 3.99% 3.99% 3.92%

Pseudomonas aeruginosa DK2 4.00% 3.99% 3.99% 3.99%

Staphylococcus epidermidis ATCC 12228 3.97% 3.98% 3.98% 3.98%

Streptococcus mitis B6 2.94% 3.82% 3.87% 3.94%

Streptococcus mutans UA159 3.58% 3.99% 3.99% 3.99%

Stapylococcus aureus HO 5096 0412 0.31% 1.76% 2.48% 3.80%

Stapylococcus aureus JKD6008 0.05% 15.82% 13.40% 3.79%

Stapylococcus aureus MRSA252 0.69% 1.46% 2.14% 3.85%

Stapylococcus aureus N315 0.00% 0.68% 1.46% 1.01%

Stapylococcus aureus Newman 0.15% 0.33% 0.56% 3.48%

Streptococcus pneumoniae 670-6B 0.92% 3.28% 12.87% 4.43%

Streptococcus pneumoniae ATCC 700669 0.29% 0.99% 2.10% 4.23%

Streptococcus pneumoniae G54 0.16% 0.44% 1.17% 3.35%

Streptococcus pneumoniae Hungary 19A-6 19.42% 14.75% 2.58% 4.33%

Streptococcus pneumoniae Taiwan1 9 F-14 0.00% 0.66% 1.34% 2.83%

Comparison of PathoID 1.0 to 2.0 using simulated data (see the section titled ‘Simulation study to evaluate improvements in PathoID 2.0’ for details).
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The one strain that was not estimated well using a
highly informative prior was S. aureus N315, which had
a final average read assignment percentage of 1.01%
(Additional file 2). PathoID 2.0 with a highly informative
prior incorrectly assigned the following average read per-
centages to neighboring strains: Mu50: 0.8%, Mu3: 0.7%,
TW20, JH1, and JH9: 0.4%, 04-02981 and T0131: 0.3%,
ST228: 0.2%, USA300 TCH1516: 0.1% and USA300
FPR3757: 0.1% (See Additional file 2). After further
evaluation, we observed that PathoID failed with this
strain due to the ‘sequencing errors’ in our simulated
reads that caused some of the N315 reads to align more
closely to the related strains. This phenomenon limited
the ability of PathoID to correctly estimate the correct
read proportions for this strain.

Evaluation and comparison on clinical sequencing samples
We selected samples from fecal specimens obtained
from patients with diarrhea during the 2011 European
outbreak of Shiga-toxigenic Escherichia coli (STEC)
O104:H4 (NCBI accession: ERP001956). To demonstrate
the flexibility of PathoLib with the E. coli data, we
constructed a targeted library containing only E. coli
subspecies (taxID: 562). We note that many sequences
contained in this library are redundant, and include sep-
arate sequence entries for complete genomes, individual
chromosomes or plasmids, and distinct transcripts. This
sequence redundancy allows PathoLib to identify the
complete genome or chromosome for the strain if
present, and also allows for the identification of the plas-
mid or genes present in the case of a horizontal transfer.
The updates to the PathoID algorithm increased the

number of reads that were correctly assigned to the source
genome, reduced the number of false positive genomes
identified, and allowed for improved identification of mul-
tiple substrains in the same sample (Table 2). In addition,
PathoScope 2.0 outperformed competing methods, such as
RINS [12] and ReadScan [15], in computational efficiency,
detection accuracy in terms of number of reads assigned to
and overall ranking of STEC genomes, as well as in the in-
terpretability of the results (Table 2). More detailed results
from PathoScope (versions 1.0 and 2.0) and comparisons
with two other near-complete pipeline methods, RINS and
ReadScan, are detailed below.
When comparing PathoID versions 1.0 and 2.0, we ob-

served that version 2.0 assigned more reads to the STEC
genome in 31 of the 40 STEC positive samples. In these
40 samples, we observed mild to moderate increases in
proportion of reads correctly reassigned, as well as
reductions in number of incorrect genomes that were
assigned reads. For example, for one of the samples
(sample 3852), version 1.0 of the algorithm reassigned
92.4% of the reads to the correct O104:H4 substrain.
However, four other incorrect E. coli strains each

received between 1% and 2% of the reads. In contrast,
with the updated scoring approach, 99.99% of the reads
were correctly reassigned to the proper substrain. In
addition, the original scoring approach assigned read
proportions above 0.2% (range: 0.2% to 2.2%) to seven
different incorrect E. coli strains; whereas with the new
scoring system, the maximum incorrect read propor-
tion was approximately 20 to 200 times smaller at
0.01%. The other 30 samples showed similar improve-
ments (that is, shorter genome lists and more reads
assigned to the STEC genome) using the updated
scoring system.
In addition, we considered one sample in more detail

(sample 2535) because this sample contained a mixture
of distinct E. coli strains. Interestingly, PathoID found
O104:H4 at 39.5% and a few other strains in high pro-
portions as well including DH1: 12.0%, 55989: 11.9%,
BL21(DE3): 11.8% and O127:H6 str. E2348/69: 8.4%.
After processing this with a full bacterial reference
library generated by PathoLIB, the sample still remained
dominantly a mixture of E. coli strains, but PathoID did
identify Ruminococcus sp. SR1/5 (6.9% of the reads) in
the sample as well.
We compared the performance of PathoScope (ver-

sions 1.0 and 2.0), RINS, and ReadScan with these same
STEC samples. The goal of the original study was to
characterize STEC strains in a retrospective manner. In
all 40 STEC positive samples, PathoScope (versions 1.0
and 2.0) identified the correct STEC genome with vary-
ing read assignment proportions (see Table 2). In 27 of
the 40 samples, the STEC genome was the highest
ranked genome, and in 35 samples the STEC genome
was among the top three ranked genomes. In compari-
son, in all 40 samples ReadScan was able to identify the
Shiga-toxin producing plasmid, ranking the correct plas-
mid first in 28 of the samples and in the top three hits
for 33 samples. However, ReadScan could not discrimin-
ate between specific E. coli strains, indicating that Read-
Scan was very effective at identifying the pathogenic
elements, but it could not identify the specific strains in
which the plasmid resided because it does not connect
plasmids, genes, or chromosomes from the same gen-
ome in the reference library. This reduces ReadScan’s
ability to use unique plasmids and genes to identify the
correct species/strains on the sample, particularly in
cases where the pathogenic plasmid is transferred to a
different bacterial strain or species. RINS was unable to
accurately identify the correct STEC genome or plasmid
in any of the samples. RINS employs a method of assem-
bly of contigs from the reads and uses a local version of
BLAST to classify contigs, which does not seem to work
well when the reads are too small for assembly and
when there are some read errors. RINS generated a large
number of very small contigs that did not uniquely align
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Table 2 Comparison of PathoScope 2.0 against other methods with ELISA positive fecal samples

STEC Genome/Plasmid Rank (Plasmid Rank) Computation time (h:min)

Sample ID PathoScope 2.0 PathoScope 1.0 ReadScan RINS PathoScope
2.0

PathoScope
1.0

ReadScan RINS

Rank Proportion Rank Proportion Rank (Plasmid) Rank

2535.1a 1 39.4% 1 40.3% 9 (1) 8 8:29 7:21 16:46 1:27

2535.2 1 91.4% 1 87.8% 8 (1) 13 0:19 0:14 0:27 22:43

2535ba 1 36.9% 1 37.6% 13 (1) 36 2:47 2:25 7:26 1:26

2638 1 99.8% 1 95.7% 5 (1) 38 1:17 1:06 1:11 19:25

2661 1 95.7% 1 91.4% 8 (1) 7 0:36 0:32 1:58 8:57

2668 1 73.5% 1 85.3% 10 (1) DNF 0:01 0:01 0:29:15 >24:00

2723b 1 99.8% 1 94.1% 5.5 (1) 37 0:14 0:12 0:43 15:28

2741 4 2.9% 28 0.0% 26 (1) DNF 0:48 0:38 1:21:08 >24:00

2752 1 65.5% 2 10.1% 13 (1) 20 0:09 0:08 0:49 18:20

2758 1 99.7% 1 93.8% 8 (1) 38 0:16 0:15 0:52 10:13

2764 1 99.4% 1 96.6% 7 (1) 6 0:15 0:14 1:06 5:47

2772 1 99.6% 1 94.0% 4 (1) 8 0:00 0:00 0:16 12:22

2828 2 26.5% 2 5.3% 16 (1) 36 0:18 0:15 0:52 4:18

2840 1 99.5% 1 94.2% 8 (1) 14 1:52 1:40 1:58 19:08

2848 3 2.1% 6 0.7% 35 (3) DNF 0:14 0:11 0:48 >24:00

2849 1 99.7% 1 95.2% 8 (1) 27 0:28 0:24 1:12:40 2:16:27

2878 1 99.4% 1 93.6% 8 (1) DNF 0:07 0:06 1:04 >24:00

2880 1 87.9% 1 90.5% 11 (1) 37 0:04 0:04 0:26:33 2:35:38

2896 1 99.9% 1 95.2% 3 (1) 14 0:43 0:34 1:36:33 10:51:35

2971 1 99.9% 1 93.3% 8 (1) 38 0:23 0:19 0:56:59 5:05:27

3014 1 99.7% 1 92.3% 7 (1) DNF 0:34 0:31 1:07:34 >24:00

3093 1 100.0% 1 88.7% 7 (1) 20 0:00 0:00 0:21:46 0:25:38

3132 1 96.5% 1 89.8% 15 (1) 11 0:07 0:06 1:36:49 8:56:37

3134 2 28.0% 2 5.8% 26 (1) 38 0:19 0:16 0:48:50 2:00:25

3135 1 99.7% 1 93.2% 8 (1) DNF 0:12 0:10 0:58:49 >24:00

3185 1 91.4% 1 89.4% 9 (2) 6 0:22 0:19 0:51:03 17:34:13

3303 1 99.4% 1 94.2% 8 (1) 37 0:13 0:10 0:42:17 0:27:51

3549 8 0.7% 12 0.4% 65 (8) 9 0:11 0:09 0:41:51 20:41:23

3587 2 5.8% 3 2.5% 20 (7) DNF 0:10 0:09 1:04:31 >24:00

3646 17 0.0% 5 1.2% 57 (19) 20 0:07 0:05 1:11:30 0:43:05

3751 2 5.8% 2 2.9% 19 (3) DNF 0:22 0:19 1:11:05 >24:00
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Table 2 Comparison of PathoScope 2.0 against other methods with ELISA positive fecal samples (Continued)

3852 1 100.0% 1 92.4% 5 (1) 13 0:00 0:00 0:18:15 1:08:41

3958 3 2.9% 5 1.1% 64 (7) 9 0:05 0:05 0:41:53 10:33:13

4112 7 0.7% 3 2.8% 50 (6) 38 0:08 0:08 0:41:39 13:05:36

4141 1 74.7% 1 83.5% 28 (2) NI 0:03 0:03 1:01:14 10:57:57

4168 1 100.0% 1 95.2% 2 (1) 13 0:00 0:00 0:08:43 6:29:11

4198 2 1.4% 3 0.8% 36 (11) 37 0:43 0:33 1:20:30 12:17:53

4328b 1.5 21.7% 1 87.0% 7.5 (2) DNF 0:05 0:05 0:56 >24:00

4508 3 6.5% 3 2.2% 37 (8) 38 0:05 0:04 0:44:12 14:44:41

5066 17 0.1% 13 0.2% 14 (1) DNF 0:06 0:05 0:26:53 >24:00
aUsed different parameters for bowtie2 alignment: ‘–very-sensitive-local –score-min L,280,0.0 -k 10’.
bThere are multiple sequencing runs for this sample, so the results were averaged across replicates.
DNF: the algorithm did not finish in less than 24 h on a 16 cpu compute node; NI: the STEC O104:H4 genome was not identified by the method.
These are the results from the O104:H4 study - Positive Samples. See the section titled ‘Evaluation and comparison on clinical sequencing samples’ for details.
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to any specific genome with these samples. When the
reads are too short and the coverage is not deep enough
for assembly, as in this case, discriminatory information
can be lost by an assembly approach because some of
the reads that carry discriminatory information reads
were not included in the contigs.
We also analyzed nine STEC negative samples from

this dataset (Table 3). RINS did not score a STEC gen-
ome or plasmid very highly in any of the samples, but
the results were very consistent (that is, genome/plasmid
rankings) with the STEC positive samples. ReadScan
ranked the STEC plasmid as one of the two highest
scoring hits for four of the eight samples. Similarly,
PathoID 1.0 also estimated the STEC genome propor-
tions to be more than 1.0% in four of the samples. In
contrast, PathoID 2.0 only estimated one of the samples
to have a ‘high’ STEC percentage (1.4%). We note that
these false positives were due to the fact that these reads
were only aligned to the E. coli reference library, and
when we used the more general bacterial reference
library, we found that PathoID 2.0 estimated the STEC
percentage as close to zero for all the samples.
In addition to being more accurate than the other

methods, PathoScope also outperformed RINS and
ReadScan in terms of the computation time needed to
complete the analysis. On a cluster node with 16 CPUs
and 256 GB of RAM, PathoScope 2.0 required an aver-
age of 17 min of compute time, whereas ReadScan re-
quired an average of 50 min and RINS required an
average of more than 8 h for the 30 completed samples
(10 of the samples did not finish in less than 24 h).
PathoID version 1.0 was on average 3 min faster than
PathoID version 2.0, but this computational time
increase is almost entirely due to added features in ver-
sion 2.0, such as better genome annotation, detailed re-
sult reporting, and interaction with other PathoScope

modules. We also repeated the experiment with a lar-
ger target database containing all bacterial sequences.
Only PathoScope 2.0 was able to finish this run
successfully in a reasonable computational timeframe
(<24 h per sample).

Conclusions
PathoScope 2.0 provides a complete modular bioinfor-
matics workflow to analyze metagenomic sequence data
from clinical or environmental samples. The pipeline
helps researchers to efficiently generate custom refer-
ence libraries, align reads to a target library, filter host
reads, overcome read alignment ambiguity, characterize
target diversity, and annotate results. Our simulated and
real-data examples show that PathoScope 2.0 is a highly
sensitive and efficient approach for metagenomic ana-
lysis, without the need for computationally intensive
database preprocessing and time-consuming de novo
assembly. PathoScope 2.0 is a fast and modularized pipe-
line for which we provide a comprehensive command
line interaction so that more advanced users can select-
ively run parts of the modules, but is user-friendly
enough to be used by researchers with weaker computa-
tional backgrounds.
The libraries generated by PathoLib contain all avail-

able reference genome sequences (for example, NCBI
nucleotide) that meet the user-defined genome or taxID
selection set. These sequences are often redundant, and
may include separate entries for the complete genome
sequences, individual chromosomes or plasmids, and
distinct transcript sequences. Thus, for any given bacter-
ial genome, chromosome, or plasmid, the reference
library will likely contain all three elements in separate
forms. PathoScope will then use the reads to identify the
most likely source for the reads. For example, if the
reads only align to the plasmid, then PathoScope will

Table 3 Comparison of PathoScope 2.0 against alternatives with ELISA negative fecal samples

STEC Genome/Plasmid Rank (Plasmid Rank) Computation time (h:min)

Sample
ID

PathoScope 2.0 PathoScope 1.0 ReadScan RINS PathoScope
2.0

PathoScope
1.0

ReadScan RINS

Rank Proportion Rank Proportion Rank (Plasmid) Rank

1253 3 1.4% 8 0.3% 33 (2) 38 0:03 0:03 0:41 18:10

4961 7 0.3% 6 0.6% 40 (11) 38 1:16 0:59 1:09:37 23:58:39

1122 14 0.0% 2 7.3% 24 (1) 38 0:00 0:00 0:21:43

1196 NI 0.0% 2 3.0% 38 (1) 7 0:13 0:11 2:45:37 4:19:29

4096 25 0.0% 8 0.6% 70 (6) 14 0:07 0:06 0:29:09 0:06:00

1196b 4 0.8% 3 3.1% 31 (29) 9 0:04 0:04 1:27:27 7:03:26

4961b 8 0.2% 4 0.5% 35 (16) 39 0:15 0:12 0:30:49 21:30:20

1122b 15 0.0% 2 6.6% 26 (2) 38 0:03 0:02 0:17:41 5:32:59

4096b 22 0.0% 8 0.4% 76 (7) 36 0:01 0:01 0:14:37 0:18:45

NI: the STEC O104:H4 genome was not identified by the method.
These are the results from the O104:H4 study - Negative Samples. See the section titled ‘Evaluation and comparison on clinical sequencing samples’ for details.
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select the plasmid as the source. If the reads align to
both the plasmid and the surrounding sequence and/or
neighboring chromosomes, the entire genome will
likely be selected. In the E. coli example above, this
allowed PathoScope to identify the entire STEC gen-
ome of interest, whereas ReadScan was only able to
identify the STEC plasmid.
One possible limitation to the reference-based ap-

proach used by PathoScope is that it relies on the gen-
ome for each strain to be present in the library in order
to achieve a precise identification. We note that PCR
and microarray based approaches fail when the target is
unknown as well, as we cannot make PCR primers when
we do not know the sequence. In cases where the
species is truly novel with no closely related sequenced
genomes, PathoScope will not be able to identify the
species/strain of origin for the reads. However, we have
previously shown that when the specific strain is not in
the reference, PathoID can successfully identify the near-
est species/strain in the library [16]. For example, we
showed that when the E. coli O104:H4 genome was not
in the library, PathoID successfully identified the 55989
strain, which has been previously established as the
nearest sequenced strain to O104:H4 [16]. We observed
a similar effect when we removed the correct F. tularen-
sis strain from the library [16]. Therefore, based on these
examples, we have demonstrated that PathoScope is a
robust and useful tool for the majority of the metage-
nomic studies. Furthermore, the modular framework of
PathoScope 2.0 allows for additional assembly-based
modules to be added to the framework that would be
able to identify completely novel genomes.

Methods
Improvements to the PathoID reassignment model
The PathoID module essentially comprises our previ-
ously published PathoScope version 1.0 software [16].
PathoID inputs aligned sequencing reads in SAM format
[18], and returns an updated alignment file of read reassign-
ments (also SAM format) along with summary report con-
taining read proportions assigned to each genome in the
reference library. The modular PathoScope 2.0 framework
introduces improvements in the original PathoID algo-
rithm, as well as several novel functionalities that extend
PathoID into a complete workflow for sequence-based
metagenomic profiling. These include: (1) the automatic ex-
traction of custom reference genome libraries (PathoLib);
(2) the construction of reference indices (splitting large li-
braries into separate indices, if necessary), the alignment of
reads to the target libraries, and the filtering reads that align
to the host or other filter libraries (PathoMap); (3) the pre-
processing of reads with complete and parallel quality con-
trol (PathoQC); (4) the annotation of all sequences in the
reference library (PathoDB); and (5) detailed reports on

organisms, reads, genes, and gene products identified in the
study (PathoReport).
PathoID utilizes a missing data mixture modeling ap-

proach, where the template genome of origin is the ‘missing
data’. It integrates information from the read alignment
with information obtained by borrowing strength across all
reads from the sample to reassign ambiguous reads to
the most likely source genome in the library. The
PathoID likelihood contains a parameter that penalizes
reads that align to multiple genomes; thus, increasing
the impact of uniquely mapping reads on the reassign-
ment result. Conversely, the previously published
PathoID algorithm does not penalize reads relative to
their ‘best’ read alignment, meaning that reads that
align perfectly have the same influence on the result as
reads whose best alignment contains base mismatches.
Furthermore, in the PathoID version 1.0, reference
genome length is also not expressly modeled in the
likelihood, yielding an advantage for completed ge-
nomes over smaller incomplete sequence fragments. In
cases where the closest reference genome is incom-
pletely assembled, PathoID might tend to identify a
more genetically distant completed genome. Finally,
although PathoID was initially developed under a
Bayesian framework, the PathoID version 1.0 software
does not allow users to easily modify the preset priors.
This becomes extremely important in cases where
there is more than one substrain of the same species
present in the same sample. To accommodate these
concerns, we introduced the following changes into
version 2.0 of the PathoID reassignment model:

Read alignment score
To increase the influence of perfect match reads in
PathoID, we implemented a weighted likelihood based ap-
proach, which consists of weighting the reads in the log-
likelihood based on their relative alignment likelihood
(exponentiated alignment ‘bit score’). A more general form
of this weighted likelihood formulation has been rigorously
evaluated and shown to share the same asymptotic features
of the genuine likelihood function [19]. In the finite sample
metagenomic context, the reads with a higher alignment
scores will have more influence on the results than reads
that align with more mismatches.

Reference genome length
We weight likelihood contributions for each alignment by
the inverse of the length of a target genome. Similar
approaches for adjusting for length in sequence alignments
are well established, for example, BLAST ‘E-value’ [20].

Read alignment scores
For most SAM alignment files (including Bowtie 2 align-
ments), our original read assignment algorithm used the
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SAM-MAPQ score to provide relative alignment prob-
abilities. We now use the read alignment bit score (AS)
from the Bowtie2 output. The AS is also standardized by
adding the read length and normalizing the score to a
fixed range so that the likelihood calculations of the EM
algorithm do not exceed upper or lower computational
precision limits.

Flexible user-defined prior values
The PathoID reassignment module was developed under
a Bayesian framework that allows researchers to insert
prior information into the genome identification ap-
proach. This provides an option for the user to ‘bias’ the
PathoID reassignment in cases where the researcher has
a priori knowledge of the likely content of the metage-
nomic sample. In addition, by assigning a prior value on
the read ambiguity penalty, the user can modify the
severity of the penalty placed on ambiguous reads. This
becomes extremely important in cases where there are
multiple substrains of the same species in the sample.
With non-informative priors in this penalty parameter
(default in version 1.0), PathoID has the tendency to
search for a ‘parsimonious’ solution, often at the cost of
assigning all non-unique reads to only one of the highly
similar substrains present in the sample. By adding an
informative prior to the penalty parameter, the PathoID
reassignment will be less precise in its read assignments,
but will more closely estimate the correct proportions
assigned to the multiple substrains - usually at the cost
of decreased accuracy of the unique strains in the sam-
ple. In version 2.0 of the PathoID algorithm, we allow
the user to modify the prior values placed on the gen-
ome proportion and read penalty parameters. To deter-
mine whether an informative prior is needed, we suggest
that the user considers an alignment to a core genome
region for species that might have multiple strains
present in the sample. If there are multiple closely re-
lated strains present in the sample then it is best to use
highly informative prior value. On the contrary, if it ap-
pears that there is one particular strain to be identified,
then it is best to use default or low informative prior
value.

Simulation study details
We generated a simulation study dataset to assess the
performance of improvements made to PathoID in ver-
sion 2.0 of the software. In particular, we wanted to
evaluate the impact of informative prior information on the
ability to accurately estimate genome proportions when
multiple strains of the same species are present in the
sample. To do this, we simulated sequencing reads from 25
strains of bacteria which includes five Escherichia coli
strains (O42, 55989, SE11, SE15 UMNK88), five Staphylo-
coccus aureus strains (JKD6008, Newman, MRSA252, HO

5096 0412, N315), five Streptococcus pneumoniae strains
(670, ATCC_700669, G54, Hungary19A, Taiwan19F) and
10 other common bacterial strains (Bacteroides fragilis
638R, Bifidobacterium bifidum BGN4, Clostridium
perfringens ATCC 13124, Enterococcus faecalis V583,
Haemophilus influenzae 10810, Neisseria meningitidis
MC58, Pseudomonas aeruginosa DK2, Staphylococcus epi-
dermidis ATCC 12228, Streptococcus mitis B6, Strepto-
coccus mutans UA159). The phylogenetic relationships
between these strains and other strains available in the
NCBI database are given in Additional file 3. We used
the Mason read simulator [21] to generate five sets of
100,000 reads for each strain simulating 100 bp single-end
sequencing reads using an ‘Illumina-like’ sequencing error
model; Mason parameters: ‘illumina -s ## -N 100000 -sq -n
100 -i -hs 0.0 -hi 0 -hnN -nN’ (-s (Seeds) = 1101, 1102,
1103, 1104, 1105). We used PathoLib (-t 2 –subTax) to gen-
erate a reference library containing all bacteria. We used
PathoMap (default parameters) to index and align the reads
to the bacterial library. PathoMap automatically splits the
bacterial library into smaller parts (<4.3 GB in size) that the
Bowtie2 aligner can process and combines the alignment
files together for the final results. We then applied PathoID
(versions 1.0 and 2.0) to the simulated datasets. PathoID
version 2.0 was applied with default parameters and with
three informative priors (low, moderate, high). The low in-
formative prior corresponds to ‘-thetaPrior 1000’, moderate
informative prior corresponds to ‘-thetaPrior 50000’ and
high informative prior corresponds to ‘-thetaPrior 10**88’.
The thetaPrior value represents the number of non-unique
reads that are not subject to reassignment.

European E. coli outbreak samples
We obtained data from the 2011 European outbreak of
Shiga-toxigenic Escherichia coli O104:H4 [22]. The data-
set consisted of 150 bp paired-end sequencing reads
from fecal samples obtained from patients impacted
by outbreak (NCBI accession number: ERP001956). We
used reads from 21 sequencing runs originating from 19
samples for which a standard enzyme-linked immuno-
sorbent assay (ELISA) identified a bacterial shiga toxin.
The data were pre-filtered for human nucleic or mito-
chondrial reads and only included reads that have a
‘best-hit’ alignment to bacterial taxon genomes [22]. We
applied PathoScope 2.0, PathoScope 1.0, ReadScan, and
RINS to the datasets using the parameters given in
Additional file 4. Because of the nature of this study and
to demonstrate the flexibility of PathoLib, we con-
structed a target library containing all E. coli subspecies
(taxID: 562) in the NCBI RefSeq nucleotide database
(download date: January, 2013). PathoLib extracted
46,640 sequence entries from a total 54 different E. coli
strains. We used these samples to compare the improved
performance of PathoScope 2.0 over PathoScope 1.0,

Hong et al. Microbiome 2014, 2:33 Page 13 of 15
http://www.microbiomejournal.com/content/2/1/33



and have also included comparisons with two other
near-complete pipeline methods, RINS and ReadScan.
We recorded the rank of the E. coli O104:H4 genome,
the highest-ranking pathogenic E. coli plasmid (Read-
Scan only), the proportion of reads assigned to O104:H4
(PathoID only), and the total computational time required.
We also limited computational time to 24 h on a 16 cpu
node (24 × 16 = 384 cpu hours) for each individual sample.

PathoScope 2.0 software tutorial
We provide a complete tutorial (Additional file 5) that
covers the basics of using PathoScope to analyze metage-
nomic samples. The tutorial provides a step-by-step pro-
cedure to transform unintelligible sequencing reads into a
meaningful picture of the microbial content present in a
sample.

Additional files

Additional file 1: PathoReport xml files for one sample (sample id:
4168) before and after PathoID. The MAP_4168-H-STEC.xml file is the
PathoReport generated from the sam alignment file before PathoID and
updated_MAP_4168-H-STEC.xml is the PathoReport generated from the
updated sam alignment file created by PathoID. The xml file contains
more detailed results, including the reads assigned to each genome and
contiguous sequences (contigs) constructed from overlapping reads.

Additional file 2: Simulation study results. This file has the complete
results from the simulation study with eight tabs at the bottom. There is
a caption in each of the sheets at the bottom explaining the table
present in each of the sheets.

Additional file 3: Phylogenetic relationships of the S. aureus, E. coli,
and S. peumoniae genomes. The genomes that are highlighted in red
boxes were used for generating the reads. These images were obtained
and modified from the NCBI: http://www.ncbi.nlm.nih.gov/genome/?
term=staphylococcus%20aureus, http://www.ncbi.nlm.nih.gov/genome/?
term=escherichia%20coli, http://www.ncbi.nlm.nih.gov/genome/?term=
streptococcus%20pneumoniae.

Additional file 4: Parameter values used for the E. coli study
unless explicitly stated otherwise for some cases (for one 2535
sample, a different PathoMap parameter was used, which is the
following: ‘–very-sensitive-local –score-min L,280,0.0 -k 10’).

Additional file 5: Pathoscope 2.0 user tutorial. This tutorial demonstrates
the basics of using PathoScope 2.0 to analyze metagenomic samples.
We provide a step-by-step procedure that will transform your unintelligible
sequencing reads into a meaningful picture of the microbial content present
in a sample.
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