34,923 research outputs found

    New solutions of the D-dimensional Klein-Gordon equation via mapping onto the nonrelativistic one-dimensional Morse potential

    Full text link
    New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approac

    Wigner Oscillators, Twisted Hopf Algebras and Second Quantization

    Full text link
    By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U^F(h) are shown to be induced from a more fundamental Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of the super-algebra osp(1|2n). We also discuss the possible implications in the context of quantum statistics.Comment: 23 page

    Spin and Pseudospin symmetries in the Dirac equation with central Coulomb potentials

    Full text link
    We analyze in detail the analytical solutions of the Dirac equation with scalar S and vector V Coulomb radial potentials near the limit of spin and pseudospin symmetries, i.e., when those potentials have the same magnitude and either the same sign or opposite signs, respectively. By performing an expansion of the relevant coefficients we also assess the perturbative nature of both symmetries and their relations the (pseudo)spin-orbit coupling. The former analysis is made for both positive and negative energy solutions and we reproduce the relations between spin and pseudospin symmetries found before for nuclear mean-field potentials. We discuss the node structure of the radial functions and the quantum numbers of the solutions when there is spin or pseudospin symmetry, which we find to be similar to the well-known solutions of hydrogenic atoms.Comment: 9 pages, 2 figures, uses revte

    Hemisphere Mixing: a Fully Data-Driven Model of QCD Multijet Backgrounds for LHC Searches

    Get PDF
    A novel method is proposed here to precisely model the multi-dimensional features of QCD multi-jet events in hadron collisions. The method relies on the schematization of high-pT QCD processes as 2->2 reactions made complex by sub-leading effects. The construction of libraries of hemispheres from experimental data and the definition of a suitable nearest-neighbor-based association map allow for the generation of artificial events that reproduce with surprising accuracy the kinematics of the QCD component of original data, while remaining insensitive to small signal contaminations. The method is succinctly described and its performance is tested in the case of the search for the hh->bbbb process at the LHC.Comment: 4 pages plus header, 1 figure, proceedings of EPS 2017 Venic

    Hidden Ferronematic Order in Underdoped Cuprates

    Full text link
    We study a model for low doped cuprates where holes aggregate into oriented stripe segments which have a vortex and an antivortex fixed to the extremes. We argue that due to the interaction between segments a state with macroscopic polarization is stabilized, which we call a ferronematic. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order parameter-like temperature dependence.Comment: 5 pages, 4 figure

    Dynamical Renormalization Group Study for a Class of Non-local Interface Equations

    Full text link
    We provide a detailed Dynamic Renormalization Group study for a class of stochastic equations that describe non-conserved interface growth mediated by non-local interactions. We consider explicitly both the morphologically stable case, and the less studied case in which pattern formation occurs, for which flat surfaces are linearly unstable to periodic perturbations. We show that the latter leads to non-trivial scaling behavior in an appropriate parameter range when combined with the Kardar-Parisi-Zhang (KPZ) non-linearity, that nevertheless does not correspond to the KPZ universality class. This novel asymptotic behavior is characterized by two scaling laws that fix the critical exponents to dimension-independent values, that agree with previous reports from numerical simulations and experimental systems. We show that the precise form of the linear stabilizing terms does not modify the hydrodynamic behavior of these equations. One of the scaling laws, usually associated with Galilean invariance, is shown to derive from a vertex cancellation that occurs (at least to one loop order) for any choice of linear terms in the equation of motion and is independent on the morphological stability of the surface, hence generalizing this well-known property of the KPZ equation. Moreover, the argument carries over to other systems like the Lai-Das Sarma-Villain equation, in which vertex cancellation is known {\em not to} imply an associated symmetry of the equation.Comment: 34 pages, 9 figures. Journal of Statistical Mechanics: Theory and Experiments (in press

    Optical conductivity near finite-wavelength quantum criticality

    Full text link
    We study the optical conductivity sigma(Omega) of an electron system near a quantum-critical point with finite-wavelength ordering. sigma(Omega) vanishes in clean Galilean-invariant systems, unless electrons are coupled to dynamical collective modes, which dissipate the current. This coupling introduces a nonuniversal energy scale. Depending on the parameters of each specific system, a variety of responses arise near criticality: scaling peaks at a temperature- and doping-dependent frequency, peaks at a fixed frequency, or no peaks to be associated with criticality. Therefore the lack of scaling in the far-infrared conductivity in cuprates does not necessarily call for new concepts of quantum criticality.Comment: 4 pages, 4 figures; version as publishe
    • …
    corecore