research

Wigner Oscillators, Twisted Hopf Algebras and Second Quantization

Abstract

By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U^F(h) are shown to be induced from a more fundamental Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of the super-algebra osp(1|2n). We also discuss the possible implications in the context of quantum statistics.Comment: 23 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019