28,015 research outputs found
Beyond the soft photon approximation in radiative production and decay of charged vector mesons
We study the effects of model-dependent contributions and the electric
quadrupole moment of vector mesons in the decays and
. Their interference with the amplitude originating
from the radiation due to electric charges vanishes for photons emitted
collinearly to the charged particle in the final state. This brings further
support to our claim in previous works, that measurements of the photon energy
spectrum for nearly collinear photons in those decays are suitable for a first
measurement of the magnetic dipole moment of charged vector mesons.Comment: 13 pages, 2 eps figures, Latex. Accepted for publication in Journal
of Physics G: Nuclear and Particle Physics(2001
Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver
[Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered,
an 18-m long corridor and a 42-m2 office. The modeling
technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics
for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions
Propagation modelling and measurements in a populated indoor environment at 5.2 GHz
There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2.
Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz.
Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis.
The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians.
A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz
The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities
The thermal behavior of a one-dimensional antiferromagnetic chain doped by
donor impurities was analyzed. The ground state of such a chain corresponds to
the formation of a set of ferromagnetically correlated regions localized near
impurities (bound magnetic polarons). At finite temperatures, the magnetic
structure of the chain was calculated simultaneously with the wave function of
a conduction electron bound by an impurity. The calculations were performed
using an approximate variational method and a Monte Carlo simulation. Both
these methods give similar results. The analysis of the temperature dependence
of correlation functions for neighboring local spins demonstrated that the
ferromagnetic correlations inside a magnetic polaron remain significant even
above the N\'eel temperature implying rather high stability of the
magnetic polaron state. In the case when the electron-impurity coupling energy
is not too high (for lower that the electron hopping integral ), the
magnetic polaron could be depinned from impurity retaining its magnetic
structure. Such a depinning occurs at temperatures of the order of . At
even higher temperatures () magnetic polarons disappear and the chain
becomes completely disordered.Comment: 17 pages, 5 figures, RevTe
Super Five Brane Hamiltonian and the Chiral Degrees of Freedom
We construct the Hamiltonian of the super five brane in terms of its physical
degrees of freedom. It does not depend on the inverse of the induced metric.
Consequently, some singular configurations are physically admissible, implying
an interpretation of the theory as a multiparticle one. The symmetries of the
theory are analyzed from the canonical point of view in terms of the first and
second class constraints. In particular it is shown how the chiral sector may
be canonically reduced to its physical degrees of freedom.Comment: 16 pages, typos correcte
Noise characterization of an atomic magnetometer at sub-millihertz frequencies
Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to
100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear
magneto-optical rotation. This was done in order to assess if the technology
can be used for space missions with demanding low-frequency requirements like
the LISA concept. Magnetometry for low-frequency applications is usually
limited by noise and thermal drifts, which become the dominant
contributions at sub-millihertz frequencies. Magnetic field measurements with
atomic magnetometers are not immune to low-frequency fluctuations and
significant excess noise may arise due to external elements, such as
temperature fluctuations or intrinsic noise in the electronics. In addition,
low-frequency drifts in the applied magnetic field have been identified in
order to distinguish their noise contribution from that of the sensor. We have
found the technology suitable for LISA in terms of sensitivity, although
further work must be done to characterize the low-frequency noise in a
miniaturized setup suitable for space missions.Comment: 11 pages, 12 figure
Phase diagram as a function of temperature and magnetic field for magnetic semiconductors
Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and
A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase
diagram for degenerate antiferromagnetic semiconductors in the T-H plane for
different current carrier densities. Both, wide-band semiconductors and
'double-exchange' materials, are investigated.Comment: 5 pages, 6 figures, RevTex, Accepted for publication in PR
Magnetic polarons in doped 1D antiferromagnetic chain
The structure of magnetic polarons (ferrons) is studied for an 1D
antiferromagnetic chain doped by non-magnetic donor impurities. The conduction
electrons are assumed to be bound by the impurities. Such a chain can be
described as a set of ferrons at the antiferromagnetic background. We found
that two types of ferrons can exist in the system. The ground state of the
chain corresponds to the ferrons with the sizes of the order of the
localization length of the electron near the impurity. The ferrons of the
second type produce a more extended distortion of spins in the chain. They are
stable within a finite domain of the system parameters and can be treated as
excitations above the ground state. The ferrons in the excited states can
appear in pairs only. The energy of the excited states decreases with the
growth in density of impurities. This can be interpreted as a manifestation of
an attractive interaction between ferrons.Comment: 6 pages, 5 figures, RevTex4, submitted to PR
Vortex liquid crystals in anisotropic type II superconductors
In a type II superconductor in a moderate magnetic field, the superconductor
to normal state transition may be described as a phase transition in which the
vortex lattice melts into a liquid. In a biaxial superconductor, or even a
uniaxial superconductor with magnetic field oriented perpendicular to the
symmetry axis, the vortices acquire elongated cross sections and interactions.
Systems of anisotropic, interacting constituents generally exhibit liquid
crystalline phases. We examine the possibility of a two step melting in
homogeneous type II superconductors with anisotropic superfluid stiffness from
a vortex lattice into first a vortex smectic and then a vortex nematic at high
temperature and magnetic field. We find that fluctuations of the ordered phase
favor an instability to an intermediate smectic-A in the absence of intrinsic
pinning
The formation of planetary disks and winds: an ultraviolet view
Planetary systems are angular momentum reservoirs generated during star
formation. This accretion process produces very powerful engines able to drive
the optical jets and the molecular outflows. A fraction of the engine energy is
released into heating thus the temperature of the engine ranges from the 3000K
of the inner disk material to the 10MK in the areas where magnetic reconnection
occurs. There are important unsolved problems concerning the nature of the
engine, its evolution and the impact of the engine in the chemical evolution of
the inner disk. Of special relevance is the understanding of the shear layer
between the stellar photosphere and the disk; this layer controls a significant
fraction of the magnetic field building up and the subsequent dissipative
processes ougth to be studied in the UV.
This contribution focus on describing the connections between 1 Myr old suns
and the Sun and the requirements for new UV instrumentation to address their
evolution during this period. Two types of observations are shown to be needed:
monitoring programmes and high resolution imaging down to, at least,
milliarsecond scales.Comment: Accepted for publication in Astrophysics and Space Science 9 figure
- …