17 research outputs found

    Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil

    Get PDF
    The growth of graphene on copper foil has been performed, following the well-known low-pressure chemical vapor (LP-CVD) procedure. The as-deposited monolayer graphene clearly exhibits two different coupling behaviors with the metal substrate, as demonstrated by visual microscopic investigation and by other experimental techniques, like Scanning Electron Microscopy (SEM) and micro-Raman spectroscopy. The single graphene sheet shows both large areas where it is coupled to the metal substrate and others where it exhibits freestanding-like characteristics. This phenomenology appears to be related to oxidation of the copper surface. In addition, we demonstrate the possibility to induce a variation of the coupling state by visible-light irradiation above a proper power threshold. The resulting change of the coupling with the metal substrate is associated to a local variation of the work function. Applications in high-performance electronic devices can be suitably tailored by optical methods and, in principle, by any local probe producing "hot spots" such as Scanning Tunneling Microscopy (STM) tips and electron beams.</p

    A Genome-Wide siRNA Screen to Identify Modulators of Insulin Sensitivity and Gluconeogenesis

    Get PDF
    BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC) promoter (AH-G6PC cells). Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4) mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD) of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in our cell-based druggable genome siRNA screen hold the potential to serve as novel pharmacological targets for the treatment of T2D

    Characterization of rhenium oxide films and their application to liquid crystal cells

    No full text
    Rhenium trioxide exhibits high electronic conductivity, while its open cubic crystal structure allows an appreciable hydrogen intercalation, generating disordered solid phases, with protonic conductivity. Rhenium oxide thin films has been obtained by thermal evaporation of ReO3 powders on different substrates, maintained at different temperatures, and also by reactive magnetron sputtering of a Re metallic target. A comparative investigation has been carried out on these films, as well as on finely ground ReO3 powders, by probing both powder specimens and deposited films by micro-Raman spectroscopy and XRD. Two basic types of solid phases appear to grow in the films: a red metallic HxReO3 compound, with distorted perovskite structures, like in the bulk material, and ordered HReO4 crystals based on tetrahedral perrhenate ions. Because of its conduction properties, the electrical and electrooptical behaviours of ReO3 films deposited on standard ITO/glass substrate have been tested inside asymmetric nematic liquid crystal cells, showing an appreciable capability of rectification of their electro-optical response, in similar way to tungsten trioxide

    Spatial dependence of observed Raman frequencies and disorder in graphene monolayers

    No full text
    A micro-Raman investigation was carried out on several flakes of monolayer (1 L) graphene obtained by the micro-mechanical exfoliation technique and, then, put on a c-Si wafer coated by a SiO2 thin film. Some of the 1 L zones show a remarkable dispersion of the 2D-overtone wavenumber as a function of the position within the graphene sheet, and, in some case, a significant broadening of the E2g phonon (G band) is associated to this wavenumber shift of 2D-band. Such effects were studied, in particular, for a 1 L zone characterized by a rather strong lattice disorder, as revealed by the strong D/G band intensity ratio, and for other zones quite ordered, showing a vanishing intensity of the D band. Moreover, by moving along different directions within 1 L graphene sheets, different trends for 2D wavenumber and E2g phonon bandwidth vs. position were observed. All these reported behaviours are explained in terms of different distributions of intrinsic uniaxial strain occurring within the 1 L graphene sheets

    Screening of a druggable siRNA library with a 4-gene High-Throughput-Genomics (HTG) assay.

    No full text
    <p>A. Layout of genes within each well of a 4-gene HTG 384-well ArrayPlate. B. Insulin dose-responsively inhibits Dex/cAMP induction of G6PC and PDK4 mRNA expression in AH-G6PC cells when assayed by the HTG platform. Data are presented as the means ± SEM of a study performed in triplicate; similar results were obtained in 4 independent experiments. C. Dual-flashlight plot comparing SSMD values vs. average fold change in G6PC mRNA expression by all siRNA pools in the library in order to select hits that regulate G6PC mRNA levels. Glucocorticoid receptor (GR) siRNAs were used as positive controls in each plates (red dots), while non-targeting siRNAs were used as negative controls in each plate (green dots). The blue square and the small rectangle represent the up-regulators with G6PC ≥2 and SSMD ≥1 and G6PC ≥1.3 and SSMD ≥2, respectively. The orange square and the small rectangle represent the down-regulators with G6PC≤1/2 and SSMD≤−1 and G6PC≤0.7 and SSMD≤−2, respectively. D. Major proximal molecular mediators and key negative modulators of hepatic insulin signaling. siRNA knockdown of target genes that lowered and increased G6PC mRNA expression are indicated in orange and blue, respectively.</p

    Generation of the hormone-responsive human hepatoma cell line, AH-G6PC, and optimization of assay conditions for siRNA transfection.

    No full text
    <p>A. AH-G6PC cells express both the reporter gene, β-lactamase, under the control of the G6PC promoter and endogenous G6PC. B. Insulin dose-responsively decreases Dex/cAMP activation of β-lactamase activity. C. Changes in endogenous G6PC mRNA levels in AH-G6PC cells treated with vehicle (basal), Dex/cAMP, Dex/cAMP after transfection with control siRNAs (siControl), or Dex/cAMP after transfection with glucocorticoid receptor siRNAs (siGR), and increasing concentrations of insulin. D. Incubation of AH-G6PC cells with metformin (667 µM) for 16 h or rosiglitazone (10 uM) for 6 h reduces G6PC mRNA expression. Data are shown as the means ± SEM fold change relative to basal (no Dex/cAMP or insulin) in a study performed in triplicate, and is representative of multiple experiments. *, <i>P</i><0.05 by Student’s t-test vs. Dex/cAMP-treated samples.</p
    corecore