16 research outputs found

    A State-of-the-Science Review of Arsenic's Effects on Glucose Homeostasis in Experimental Models.

    Get PDF
    BackgroundThe prevalence of type 2 diabetes (T2D) has more than doubled since 1980. Poor nutrition, sedentary lifestyle, and obesity are among the primary risk factors. While an estimated 70% of cases are attributed to excess adiposity, there is an increased interest in understanding the contribution of environmental agents to diabetes causation and severity. Arsenic is one of these environmental chemicals, with multiple epidemiology studies supporting its association with T2D. Despite extensive research, the molecular mechanism by which arsenic exerts its diabetogenic effects remains unclear.ObjectivesWe conducted a literature search focused on arsenite exposure in vivo and in vitro, using relevant end points to elucidate potential mechanisms of oral arsenic exposure and diabetes development.MethodsWe explored experimental results for potential mechanisms and elucidated the distinct effects that occur at high vs. low exposure. We also performed network analyses relying on publicly available data, which supported our key findings.ResultsWhile several mechanisms may be involved, our findings support that arsenite has effects on whole-body glucose homeostasis, insulin-stimulated glucose uptake, glucose-stimulated insulin secretion, hepatic glucose metabolism, and both adipose and pancreatic β-cell dysfunction.DiscussionThis review applies state-of-the-science approaches to identify the current knowledge gaps in our understanding of arsenite on diabetes development. https://doi.org/10.1289/EHP4517

    Chronic Arsenic Exposure Impairs Adaptive Thermogenesis in Male C57BL/6J Mice

    No full text
    The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e. body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 parts per billion (ppb) for 9 weeks experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass, and unilocular lipid droplet size in both subcutaneous inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT). This hypertrophy appeared to be specific to BAT and WAT, as no lipidosis was observed in liver. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting confirmed that arsenic significantly decreased TOMM20 in both BAT and WAT, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B,the rate limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondria of thermogenic tissues involved in energy expenditure and glucose regulation, providing novel mechanistic evidence for arsenic's role in T2D development
    corecore