4 research outputs found
Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's
shallow crust, supporting life, stimulating substrate transformation, and
spurring evolutionary innovation. While oxidative processes have dominated half
of terrestrial history, the relative contribution of the biosphere and its
chemical fingerprints on Earth's developing regolith are still poorly
constrained. Here, we report results from a two-year incipient weathering
experiment. We found that the mass release and compartmentalization of major
elements during weathering of granite, rhyolite, schist and basalt was
rock-specific and regulated by ecosystem components.
A tight interplay between physiological needs of different biota, mineral
dissolution rates, and substrate nutrient availability resulted in intricate
elemental distribution patterns. Biota accelerated CO2 mineralization over
abiotic controls as ecosystem complexity increased, and significantly modified
stoichiometry of mobilized elements. Microbial and fungal components inhibited
element leaching (23.4% and 7%), while plants increased leaching and biomass
retention by 63.4%. All biota left comparable biosignatures in the dissolved
weathering products. Nevertheless, the magnitude and allocation of weathered
fractions under abiotic and biotic treatments provide quantitative evidence for
the role of major biosphere components in the evolution of upper continental
crust, presenting critical information for large-scale biogeochemical models
and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and
Data). Journal article manuscrip
Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: a multicentric matched cohort study.
The impact of inflammatory rheumatic diseases on COVID-19 severity is poorly known. Here, we compare the outcomes of a cohort of patients with rheumatic diseases with a matched control cohort to identify potential risk factors for severe illness. In this comparative cohort study, we identified hospital PCR+COVID-19 rheumatic patients with chronic inflammatory arthritis (IA) or connective tissue diseases (CTDs). Non-rheumatic controls were randomly sampled 1:1 and matched by age, sex and PCR date. The main outcome was severe COVID-19, defined as death, invasive ventilation, intensive care unit admission or serious complications. We assessed the association between the outcome and the potential prognostic variables, adjusted by COVID-19 treatment, using logistic regression. The cohorts were composed of 456 rheumatic and non-rheumatic patients, in equal numbers. Mean age was 63 (IQR 53-78) years and male sex 41% in both cohorts. Rheumatic diseases were IA (60%) and CTD (40%). Most patients (74%) had been hospitalised, and the risk of severe COVID-19 was 31.6% in the rheumatic and 28.1% in the non-rheumatic cohort. Ageing, male sex and previous comorbidity (obesity, diabetes, hypertension, cardiovascular or lung disease) increased the risk in the rheumatic cohort by bivariate analysis. In logistic regression analysis, independent factors associated with severe COVID-19 were increased age (OR 4.83; 95% CI 2.78 to 8.36), male sex (1.93; CI 1.21 to 3.07) and having a CTD (OR 1.82; CI 1.00 to 3.30). In hospitalised patients with chronic inflammatory rheumatic diseases, having a CTD but not IA nor previous immunosuppressive therapies was associated with severe COVID-19
Recommended from our members
Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.National Science Foundation (NSF)National Science Foundation (NSF) [EAR-1023215]; NSFNational Science Foundation (NSF) [EAR-0724958, EAR-1331408, EAR-1411609]; Biosphere 2 REU program [NSF EAR-1263251, NSF EAR-1004353]; United States-Mexico Commission for Educational and Cultural Exchange (COMEXUS): the FulbrightGarcia Robles Scholarship program; Thomas R. Brown Foundation endowment; NASA Astrobiology Institute "CAN7: Alternative Earths. Explaining Persistent Inhabitation on a Dynamic Early Earth"; U.S. Department of Energy, Office of Science, Office of Basic Energy SciencesUnited States Department of Energy (DOE) [DE-AC02-76SF00515]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]