4 research outputs found

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip

    Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: a multicentric matched cohort study.

    No full text
    The impact of inflammatory rheumatic diseases on COVID-19 severity is poorly known. Here, we compare the outcomes of a cohort of patients with rheumatic diseases with a matched control cohort to identify potential risk factors for severe illness. In this comparative cohort study, we identified hospital PCR+COVID-19 rheumatic patients with chronic inflammatory arthritis (IA) or connective tissue diseases (CTDs). Non-rheumatic controls were randomly sampled 1:1 and matched by age, sex and PCR date. The main outcome was severe COVID-19, defined as death, invasive ventilation, intensive care unit admission or serious complications. We assessed the association between the outcome and the potential prognostic variables, adjusted by COVID-19 treatment, using logistic regression. The cohorts were composed of 456 rheumatic and non-rheumatic patients, in equal numbers. Mean age was 63 (IQR 53-78) years and male sex 41% in both cohorts. Rheumatic diseases were IA (60%) and CTD (40%). Most patients (74%) had been hospitalised, and the risk of severe COVID-19 was 31.6% in the rheumatic and 28.1% in the non-rheumatic cohort. Ageing, male sex and previous comorbidity (obesity, diabetes, hypertension, cardiovascular or lung disease) increased the risk in the rheumatic cohort by bivariate analysis. In logistic regression analysis, independent factors associated with severe COVID-19 were increased age (OR 4.83; 95% CI 2.78 to 8.36), male sex (1.93; CI 1.21 to 3.07) and having a CTD (OR 1.82; CI 1.00 to 3.30). In hospitalised patients with chronic inflammatory rheumatic diseases, having a CTD but not IA nor previous immunosuppressive therapies was associated with severe COVID-19
    corecore