642 research outputs found

    Electrical properties of isotopically enriched neutron-transmutation-doped ^{70} Ge:Ga near the metal-insulator transition

    Full text link
    We report the low temperature carrier transport properties of a series of nominally uncompensated neutron-transmutation doped (NTD) ^{70} Ge:Ga samples very close to the critical concentration N_c for the metal-insulator transition. The concentration of the sample closest to N_c is 1.0004N_c and it is unambiguously shown that the critical conductivity exponent is 0.5. Properties of insulating samples are discussed in the context of Efros and Shklovskii's variable range hopping conduction.Comment: 8 pages using REVTeX, 8 figures, published versio

    Dopant-induced crossover from 1D to 3D charge transport in conjugated polymers

    Get PDF
    The interplay between inter- and intra-chain charge transport in bulk polythiophene in the hopping regime has been clarified by studying the conductivity as a function of frequency (up to 3 THz), temperature and doping level. We present a model which quantitatively explains the observed crossover from quasi-one-dimensional transport to three-dimensional hopping conduction with increasing doping level. At high frequencies the conductivity is dominated by charge transport on one-dimensional conducting chains.Comment: 4 pages, 2 figure

    Materials with Colossal Dielectric Constant: Do They Exist?

    Full text link
    Experimental evidence is provided that colossal dielectric constants, epsilon >= 1000, sometimes reported to exist in a broad temperature range, can often be explained by Maxwell-Wagner type contributions of depletion layers at the interface between sample and contacts, or at grain boundaries. We demonstrate this on a variety of different materials. We speculate that the largest intrinsic dielectric constant observed so far in non-ferroelectric materials is of order 100.Comment: 3 figure

    Crystal Field and Dzyaloshinsky-Moriya Interaction in orbitally ordered La_{0.95}Sr_{0.05}MnO_3: An ESR Study

    Full text link
    We present a comprehensive analysis of Dzyaloshinsky-Moriya interaction and crystal-field parameters using the angular dependence of the paramagnetic resonance shift and linewidth in single crystals of La_{0.95}Sr_{0.05}MnO_3 within the orthorhombic Jahn-Teller distorted phase. The Dzyaloshinsky-Moriya interaction (~ 1K) results from the tilting of the MnO_6 octahedra against each other. The crystal-field parameters D and E are found to be of comparable magnitude (~ 1K) with D ~= -E. This indicates a strong mixing of the |3z^2-r^2> and |x^2-y^2> states for the real orbital configuration.Comment: 12 pages, 6 figure

    Stability of sub-surface oxygen at Rh(111)

    Full text link
    Using density-functional theory (DFT) we investigate the incorporation of oxygen directly below the Rh(111) surface. We show that oxygen incorporation will only commence after nearly completion of a dense O adlayer (\theta_tot = 1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested octahedral sub-surface site occupancy, inducing a site-switch of the on-surface species from fcc to hcp sites, is indeed found to be a rather low energy structure. Our results indicate that at even higher coverages oxygen incorporation is followed by oxygen agglomeration in two-dimensional sub-surface islands directly below the first metal layer. Inside these islands, the metastable hcp/octahedral (on-surface/sub-surface) site combination will undergo a barrierless displacement, introducing a stacking fault of the first metal layer with respect to the underlying substrate and leading to a stable fcc/tetrahedral site occupation. We suggest that these elementary steps, namely, oxygen incorporation, aggregation into sub-surface islands and destabilization of the metal surface may be more general and precede the formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity

    Get PDF
    The viscosity of imidazolium ionic liquids increases dramatically when the strongest hydrogen bonding location is methylated. In this work, ultrafast two-dimensional vibrational spectroscopy of dilute thiocyanate ion ([SCN] -) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) and 1-butyl-2,3- dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C 1C12im][NTf2]) shows that the structural reorganization occurs on a 26 ± 3 ps time scale and on a 47 ± 15 ps time scale, respectively. The results suggest that the breakup of local ion-cages is the fundamental event that activates molecular diffusion and determines the viscosity of the fluids. © 2014 American Chemical Society

    Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study

    Get PDF
    The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    • …
    corecore