2,986 research outputs found
Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11
The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by
Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number
(104) of atoms in the primitive cell has precluded any previous full electronic
structure study. Using an efficient, local orbital based method within the
local spin density approximation to study the electronic structure, we find a
gap between a bonding valence band complex and an antibonding conduction band
continuum. The bonding bands lack one electron per formula unit of being
filled, making them low carrier density p-type metals. The hole resides in the
MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment,
leaving a net spin near 4 \mu_B that is consistent with experiment. These
manganites are composed of two disjoint but interpenetrating `jungle gym'
networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within
the same network, and weaker couplings between the networks whose sign and
magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be
ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic)
the ferro- and antiferromagnetic states are calculated to be essentially
degenerate. The band structure of the ferromagnetic states is very close to
half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two
additional figures (Fig.8 and 11 of the paper) are provided in JPG format in
separate files. Submitted to Phys. Rev. B on September 20th 200
Effects of plyometric jump training on jump and sprint performance in young male soccer players: a systematic review and meta-analysis.
Abstract
Background: Even from a young age, modern soccer requires high levels of physical fitness development, particularly jumping and sprinting. Plyometric jump training (PJT), combined with young athletes’ regular soccer sessions, has the potential to improve jumping and sprinting. However, studies exploring the effects of PJT are generally limited by small sample sizes. This problem of underpowered studies may thus be resolved by pooling study results in a meta-analysis.
Objective: The objective of this systematic review with meta-analysis (SRMA) was to assess the effects of plyometric jump training (PJT) on jumping and sprinting among young male soccer players.
Methods: The SRMA included peer-reviewed articles that incorporated PJT in healthy players (i.e., <23 years of age), a control group, and a measure of jumping or sprinting. Means and standard deviations of outcomes were converted to Hedges’ g effect sizes (ES), using the inverse variance random-effects model. Moderator analyses were conducted for PJT duration, frequency, total number of sessions, participants’ chronological age, and FIFA age categories (i.e., U-17 vs. U-20 vs. U-23). A multivariate random effects meta-regression was also conducted.
Results: Thirty-three studies were included, comprising 1,499 participants. PJT improved vertical jump tests (ES = 0.60-0.98; all p 7 weeks and >14 PJT sessions induced greater effects compared to PJT with ≤7 weeks and ≤14 total sessions on 10-m sprint performance (between-group p = 0.038).
Conclusion. Therefore, PJT is effective in improving jumping and sprinting performance among young male soccer players. Greater 10-m linear sprinting improvements were noted after interventions >7 weeks duration and >14 sessions, suggesting a greater return from exposure to longer PJT interventions, partially in support for the adoption of a long-term approach to athletic development in young athletes. However, with reference to the findings of the meta-regression, and those from the remaining subgroup and single factors analysis, a robust confirmation regarding the moderator role of participant’s age, or PJT configuration effects on young soccer player’s fitness qualities needs future confirmation
Recommended from our members
Granger causality-based information fusion applied to electrical measurements from power transformers
Cosmic acceleration from asymmetric branes
We consider a single 3-brane sitting in between two different five
dimensional spacetimes. On each side of the brane, the bulk is a solution to
Gauss-Bonnet gravity, although the bare cosmological constant, funda mental
Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to
weighted junction conditions across the brane and interesting brane cosmology.
We focus on two special cases: a generalized Randall-Sundrum model without any
Gauss-Bonnet terms, and a stringy model, without any bare cosmological
constants, and positive Gauss-Bonnet coupling. Even though we assume there is
no vacuum energy on the brane, we find late time de Sitter cosmologies can
occur. Remarkably, in certain parameter regions, this acceleration is preceded
by a period of matter/radiation domination, with , all the
way back to nucleosynthesis.Comment: Version appearing in CQ
A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant staphylococcus aureus pandemic
The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Grip strength predicts cardiac adverse events in patients with cardiac disorders: an individual patient pooled meta-analysis
Objective: Grip strength is a well-characterised measure of weakness and of poor muscle performance, but there is a lack of consensus on its prognostic implications in terms of cardiac adverse events in patients with cardiac disorders.
Methods: Articles were searched in PubMed, Cochrane Library, BioMed Central and EMBASE. The main inclusion criteria were patients with cardiac disorders (ischaemic heart disease, heart failure (HF), cardiomyopathies, valvulopathies, arrhythmias); evaluation of grip strength by handheld dynamometer; and relation between grip strength and outcomes. The endpoints of the study were cardiac death, all-cause mortality, hospital admission for HF, cerebrovascular accident (CVA) and myocardial infarction (MI). Data of interest were retrieved from the articles and after contact with authors, and then pooled in an individual patient meta-analysis. Univariate and multivariate logistic regression was performed to define predictors of outcomes.
Results: Overall, 23 480 patients were included from 7 studies. The mean age was 62.3±6.9 years and 70% were male. The mean follow-up was 2.82±1.7 years. After multivariate analysis grip strength (difference of 5 kg, 5× kg) emerged as an independent predictor of cardiac death (OR 0.84, 95% CI 0.79 to 0.89, p<0.0001), all-cause death (OR 0.87, 95% CI 0.85 to 0.89, p<0.0001) and hospital admission for HF (OR 0.88, 95% CI 0.84 to 0.92, p<0.0001). On the contrary, we did not find any relationship between grip strength and occurrence of MI or CVA.
Conclusion: In patients with cardiac disorders, grip strength predicted cardiac death, all-cause death and hospital admission for HF.
Trial registration number: CRD42015025280
MINERvA neutrino detector response measured with test beam data
The MINERvA collaboration operated a scaled-down replica of the solid
scintillator tracking and sampling calorimeter regions of the MINERvA detector
in a hadron test beam at the Fermilab Test Beam Facility. This article reports
measurements with samples of protons, pions, and electrons from 0.35 to 2.0
GeV/c momentum. The calorimetric response to protons, pions, and electrons are
obtained from these data. A measurement of the parameter in Birks' law and an
estimate of the tracking efficiency are extracted from the proton sample.
Overall the data are well described by a Geant4-based Monte Carlo simulation of
the detector and particle interactions with agreements better than 4%, though
some features of the data are not precisely modeled. These measurements are
used to tune the MINERvA detector simulation and evaluate systematic
uncertainties in support of the MINERvA neutrino cross section measurement
program.Comment: as accepted by NIM
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
- …