1,241 research outputs found

    A demand-driven approach for a multi-agent system in Supply Chain Management

    Get PDF
    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit. © 2010 Springer-Verlag Berlin Heidelberg

    Geometrothermodynamics of black holes

    Full text link
    The thermodynamics of black holes is reformulated within the context of the recently developed formalism of geometrothermodynamics. This reformulation is shown to be invariant with respect to Legendre transformations, and to allow several equivalent representations. Legendre invariance allows us to explain a series of contradictory results known in the literature from the use of Weinhold's and Ruppeiner's thermodynamic metrics for black holes. For the Reissner-Nordstr\"om black hole the geometry of the space of equilibrium states is curved, showing a non trivial thermodynamic interaction, and the curvature contains information about critical points and phase transitions. On the contrary, for the Kerr black hole the geometry is flat and does not explain its phase transition structure.Comment: Revised version, to be published in Gen.Rel.Grav.(Mashhoon's Festschrift

    Desarrollo de un modelo que explica el efecto de la mimosina sobre el folículo piloso de cabras productoras de cachemira a partir de imágenes histológicas de piel y fibra.

    Get PDF
    La cachemira es una fibra caprina de los folículos pilosos secundarios, que tienen fase anágena (crecimiento activo), catágena (regresión folicular) y telógena (reposo, fibra anclada). La muda es secuencial, simétrica y varía entre cuello, espalda, flanco y pierna, con intervalos de semanas, y existe asincronía entre animales. Su obtención por peinado, no aplica al bienestar animal y la esquila/peinado se debe hacer antes de la primavera, con riesgos por frío. Para explorar métodos de cosecha sincronizada, uniforme y con bienestar animal se estudió el ciclo folicular de cabras a latitud 35° Sur, La Pampa, Argentina, el desprendimiento al peinado es significativo en junio-septiembre. Para estudiar su recolección sin pérdidas significativas, en mayo (foliculos activos), se administró oralmente extracto de Leucaena leucocephala (mimosina), produciendo un efecto depilante, sincronizado y uniforme. El objetivo del trabajo, fue desarrollar un modelo que explique la acción de la mimosina sobre el folículo piloso. Se extrajeron muestras de fibra, y piel del flanco de seis cabras tratadas. Se observó microscópicamente la fibra sobre portaobjetos en glicerina y se realizaron cortes histológicos de piel por congelamiento y por inclusión en parafina, se realizaron tinciones con Azul Sulfato de Nilo, Hematoxilina y Eosina, y Tricrómico de Masson. Teniendo referencias de estudios similares en ovinos, se elaboró un modelo de distribución de mimosina y migración celular (células no afectadas, dosis dependiente) por el folículo piloso, para junto a la histología, explicar su efecto. Se observan fibras con base afinada y modificación estructural de escamas en cutícula de 350-400 μm de longitud y continuando normales, afección celular folicular en la vaina radicular interna sin desprendimiento de esta y un efecto dosis dependiente en las células (apostosis). Se concluye que el efecto de desprendimiento de las fibras se produce en el corto tiempo de exposición, sin efectos indeseables a nivel tisula

    How much does size really matter? Exploring the limits of graphene as Li ion battery anode material

    Get PDF
    Abstract We unravel the role of flake dimensionality on the lithiation/de-lithiation processes and electrochemical performance of anodes based on few-(FLG) and multi-layer graphene (MLG) flakes prepared by liquid phase exfoliation (LPE) of pristine graphite. The flakes are sorted by lateral size (from 380 to 75 nm) and thickness from 20 (MLG) to 2 nm (FLG) exploiting a sedimentation-based separation in centrifugal field and, finally, deposited onto Cu disks for the realization of four binder-free anodes. The electrochemical results show that decreasing lateral size and thickness leads to an increase of the initial specific capacity from ≈590 to ≈1270mAhg −1 . However, an increasing irreversible capacity is also associated to the reduction of flakes' size. We find, in addition, that the preferential Li ions storage by adsorption rather than intercalation in small lateral size

    Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models.

    Get PDF
    Quantifying patterns of deforestation and linking these patterns to potentially influencing variables is a key component of modelling and projecting land use change. Statistical methods based on null hypothesis testing are only partially successful for interpreting deforestation in the context of the processes that have led to their formation. Simplifications of cause-consequence relationships that are difficult to support empirically may influence environment and development policies because they suggest simple solutions to complex problems. Deforestation is a complex process driven by multiple proximate and underlying factors and a range of scales. In this study we use a multivariate statistical analysis to provide contextual explanation for deforestation in the Usumacinta River Basin based on partial pattern matching. Our approach avoided testing trivial null hypotheses of lack of association and investigated the strength and form of the response to drivers. As not all factors involved in deforestation are easily mapped as GIS layers, analytical challenges arise due to lack of a one to one correspondence between mappable attributes and drivers. We avoided testing simple statistical hypotheses such as the detectability of a significant linear relationship between deforestation and proximity to roads or water. We developed a series of informative generalised additive models based on combinations of layers that corresponded to hypotheses regarding processes. The importance of the variables representing accessibility was emphasised by the analysis. We provide evidence that land tenure is a critical factor in shaping the decision to deforest and that direct beam insolation has an effect associated with fire frequency and intensity. The effect of winter insolation was found to have many applied implications for land management. The methodology was useful for interpreting the relative importance of sets of variables representing drivers of deforestation. It was an informative approach, thus allowing the construction of a comprehensive understanding of its causes

    Anomalously localized states and multifractal correlations of critical wavefunctions in two-dimensional electron systems with spin-orbital interactions

    Full text link
    Anomalously localized states (ALS) at the critical point of the Anderson transition are studied for the SU(2) model belonging to the two-dimensional symplectic class. Giving a quantitative definition of ALS to clarify statistical properties of them, the system-size dependence of a probability to find ALS at criticality is presented. It is found that the probability increases with the system size and ALS exist with a finite probability even in an infinite critical system, though the typical critical states are kept to be multifractal. This fact implies that ALS should be eliminated from an ensemble of critical states when studying critical properties from distributions of critical quantities. As a demonstration of the effect of ALS to critical properties, we show that the distribution function of the correlation dimension of critical wavefunctions becomes a delta function in the thermodynamic limit only if ALS are eliminated.Comment: 7 pages, 6 figure

    Multifractality of Hamiltonians with power-law transfer terms

    Full text link
    Finite-size effects in the generalized fractal dimensions dqd_q are investigated numerically. We concentrate on a one-dimensional disordered model with long-range random hopping amplitudes in both the strong- and the weak-coupling regime. At the macroscopic limit, a linear dependence of dqd_q on qq is found in both regimes for values of q \alt 4g^{-1}, where gg is the coupling constant of the model.Comment: RevTex4, 5 two-column pages, 5 .eps figures, to be published in Phys. Rev.

    Multifractality and critical fluctuations at the Anderson transition

    Get PDF
    Critical fluctuations of wave functions and energy levels at the Anderson transition are studied for the family of the critical power-law random banded matrix ensembles. It is shown that the distribution functions of the inverse participation ratios (IPR) PqP_q are scale-invariant at the critical point, with a power-law asymptotic tail. The IPR distribution, the multifractal spectrum and the level statistics are calculated analytically in the limits of weak and strong couplings, as well as numerically in the full range of couplings.Comment: 14 pages, 13 eps figure

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ=ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--
    corecore