15,252 research outputs found

    Truncation effects in superdiffusive front propagation with L\'evy flights

    Full text link
    A numerical and analytical study of the role of exponentially truncated L\'evy flights in the superdiffusive propagation of fronts in reaction-diffusion systems is presented. The study is based on a variation of the Fisher-Kolmogorov equation where the diffusion operator is replaced by a λ\lambda-truncated fractional derivative of order α\alpha where 1/λ1/\lambda is the characteristic truncation length scale. For λ=0\lambda=0 there is no truncation and fronts exhibit exponential acceleration and algebraic decaying tails. It is shown that for λ0\lambda \neq 0 this phenomenology prevails in the intermediate asymptotic regime (χt)1/αx1/λ(\chi t)^{1/\alpha} \ll x \ll 1/\lambda where χ\chi is the diffusion constant. Outside the intermediate asymptotic regime, i.e. for x>1/λx > 1/\lambda, the tail of the front exhibits the tempered decay ϕeλx/x(1+α)\phi \sim e^{-\lambda x}/x^{(1+\alpha)} , the acceleration is transient, and the front velocity, vLv_L, approaches the terminal speed v=(γλαχ)/λv_* = (\gamma - \lambda^\alpha \chi)/\lambda as tt\to \infty, where it is assumed that γ>λαχ\gamma > \lambda^\alpha \chi with γ\gamma denoting the growth rate of the reaction kinetics. However, the convergence of this process is algebraic, vLvα/(λt)v_L \sim v_* - \alpha /(\lambda t), which is very slow compared to the exponential convergence observed in the diffusive (Gaussian) case. An over-truncated regime in which the characteristic truncation length scale is shorter than the length scale of the decay of the initial condition, 1/ν1/\nu, is also identified. In this extreme regime, fronts exhibit exponential tails, ϕeνx\phi \sim e^{-\nu x}, and move at the constant velocity, v=(γλαχ)/νv=(\gamma - \lambda^\alpha \chi)/\nu.Comment: Accepted for publication in Phys. Rev. E (Feb. 2009

    Non-diffusive transport in plasma turbulence: a fractional diffusion approach

    Full text link
    Numerical evidence of non-diffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of test particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time, that incorporate in a unified way space-time non-locality (non-Fickian transport), non-Gaussianity, and non-diffusive scaling. The fractional diffusion model reproduces the shape, and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed super-diffusive scaling

    Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow

    Full text link
    Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with L\'evy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma

    Time reparametrization invariance in arbitrary range p-spin models: symmetric versus non-symmetric dynamics

    Full text link
    We explore the existence of time reparametrization symmetry in p-spin models. Using the Martin-Siggia-Rose generating functional, we analytically probe the long-time dynamics. We perform a renormalization group analysis where we systematically integrate over short timescale fluctuations. We find three families of stable fixed points and study the symmetry of those fixed points with respect to time reparametrizations. One of those families is composed entirely of symmetric fixed points, which are associated with the low temperature dynamics. The other two families are composed entirely of non-symmetric fixed points. One of these two non-symmetric families corresponds to the high temperature dynamics. Time reparametrization symmetry is a continuous symmetry that is spontaneously broken in the glass state and we argue that this gives rise to the presence of Goldstone modes. We expect the Goldstone modes to determine the properties of fluctuations in the glass state, in particular predicting the presence of dynamical heterogeneity.Comment: v2: Extensively modified to discuss both high temperature (non-symmetric) and low temperature (symmetric) renormalization group fixed points. Now 16 pages with 1 figure. v1: 13 page

    Effect of Roughness in the Development of an Adverse Pressure Gradient Turbulent Boundary Layer

    Get PDF
    An experimental study was conducted to examine the effect of surface roughness on the development of an adverse pressure gradient turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and x-wire probes in the APG region of an open return type wind tunnel test section. The same experimental conditions (i.e. T∞, Uref, and Cp) are maintained between the smooth, k+= 0, and rough, k+= 41-60, cases. Results indicate that the mean velocity deficit and Reynolds stress profiles tend to increase with surface roughness. These effects of roughness were successfully removed from the outer mean velocity profiles using the Zagarola and Smits scaling, U∞δ*/δ. Using the integrated boundary layer equation, the skin friction was computed and showed a 58% increase due to the surface roughness effect. The effects of pressure gradient were found to be significant, of which, different profile trends with similar magnitudes were found for outer Reynolds normal stresses scaled with U∞

    Separatrix Reconnections in Chaotic Regimes

    Get PDF
    In this paper we extend the concept of separatrix reconnection into chaotic regimes. We show that even under chaotic conditions one can still understand abrupt jumps of diffusive-like processes in the relevant phase-space in terms of relatively smooth realignments of stable and unstable manifolds of unstable fixed points.Comment: 4 pages, 5 figures, submitted do Phys. Rev. E (1998
    corecore