55 research outputs found

    Dataset of the efficiency of the ultraviolet light activation of persulfate ion for the degradation of cobalt cyanocomplexes in synthetic mining wastewater

    Get PDF
    In recent years, the extraction of gold has become important for the development of nations. However, mining wastewater represents an environmental problem due to its high content of free cyanide-based compounds and weak and strong cyanocomplexes for the use of sodium cyanide to obtain gold from minerals. The experimental data presented show the performance of the elimination of one of the strongest cyanocomplex that can appear in mining wastewater ð½CoðCNÞ6 3Þ by the ultraviolet C activation of persulfate (PS). The removal of total cobalt in solution was used as an indicator of the elimination of the cobalt cyanocomplexes that appear as transformation products from the degradation of ½CoðCNÞ63. The data evidence that strong cyanocomplexes can be eliminated from mining wastewater. The experimental runs were divided into two parts: as a first step, the influence of the UVC light was elucidated. Afterward, five initial concentrations of persulfate ion (0.1, 0.3, 0.5, 0.7 and 0.9 g/L of PS), two pH values (11 and 13) and two additional initial concentrations of contaminant (25 mg/L and 75 mg/L of ½CoðCNÞ63 ) were examined to find the optimalparameter where the highest Co removal is obtained

    Data on the diagnosis of the management of the primary waste from electrical and electronic equipment in health care institutions in Barranquilla, Colombia

    Get PDF
    Economic and technological development advances exponentially, and the implementation of new technologies in the health sector has become a source of waste for electrical and electronic equipment (WEEE). Electrical and electronic equipment must be replaced periodically, either due to a technological update or to improve medical treatments, which ultimately leads to the generation of this type of waste. This work aimed to conduct exploratory research on the current situation of the handling of this type of waste in Barranquilla, Colombia, considering the limited information related to the management of biomedical WEEE in the city. Sixty health care institutions (HCIs), including hospitals and clinics, odontological centres and ophthalmological centres, participated favourably in the surveys concerning the management of WEEE. Through this work, it was possible to establish a working staff level of knowledge on WEEE disposal and the framework for the management and temporary collection of this waste. Therefore, the data are useful for proposing strategies for the integral management of electrical and electronic waste in both small and large populations

    Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: A new perspective for mining wastewater treatment

    Get PDF
    The photocatalytic degradation of hexacyanocobaltate ion ([Co(CN)6]3−) by TiO2 supported on borosilicate sheets was studied in a novel photoreactor operated under UVA-LEDs irradiation. The presence and absence of O2 during the process, and the reuse of the TiO2-impregnated sheets were evaluated. The semiconductor was supported by the dip-coating method, and the influence of g TiO2/g Methanol (MetOH) ratio in the suspension and substrate roughness modification were evaluated in the detachment percentage and adherence of TiO2. The highest semiconductor detachment percentage was obtained at 0.36 g TiO2/g MetOH ratio. Besides, it was determined that for the ten layers supported, the substrate roughness modification does not influence the detachment of TiO2. In the first photocatalytic tests, the results show that a better degradation performance was achieved by direct photolysis than photocatalysis according to the higher concentration of CN− released from the cyanocomplex. However, a decrease in the concentration of cobalt in solution was not observed. When the sheets were reused, a decrease of 10% in the concentration of cobalt was achieved, and 14% of CN− was released from the cyanocomplex. This was attributed to the formation of microchannels, hollows amongst other imperfections that increase the surface area and active sites of the coating when TiO2 peels off. The simplified kinetics analysis shows that for UV + O2 (oxic environment) UV + N2 (anoxic environment) similar kinetic parameters were obtained, indicating that both processes follow the same homogeneous pathway in the degradation of [Co(CN)6]3−. However, for the UV + TiO2+O2 and UV + TiO2+N2, their different kinetic parameters suggest a non-homogeneous degradation mechanism with different pathways induced by the presence or absence of O2

    Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment

    Get PDF
    The influence of the addition of cations on the adsorption of [Fe(CN)6] 3− on granular activated carbon (GAC) was evaluated. The tests were performed at three pH values (3, 8.2, and 13) to determine the repulsion or electrostatic affinity between the adsorbent and adsorbate. Afterward, the cations (K+, Ca2+, and Al3+) at three pollutant-cation molar ratios (1:1, 1:10, and 1:50) were added to the system, and the influence of those was identified by the changes in the adsorption efficiency. The results show that the higher removal (%) was obtained at pH 13 without neither the presence of iron precipitates nor the liberation of HCN. The adsorption of [Fe(CN)6] 3- was enhanced by the addition of K + at 1:10 and 1:50 mol ratio since higher removals were achieved (75.27 % and 76.81 % respectively) than those obtained in the absence of cations (64.18 %) or in the presence of Ca2+ (67.58 %) and Al3+ (65.13 %) at a 1:10 mol ratio. The behavior in adsorption in the presence of cations shows that the ion-pair adsorption mechanism can describe the physical phenomenon, showing an increase in the fraction removed and the rate of adsorption with increasing cation charge. The adsorption kinetics using K+ with a 1:10 pollutant-cation molar ratio was fitted to the Lagergren pseudo-first-order model. The GAC adsorption capacity describes the pollutant adsorption rate with the predominance of physical interactions. The experimental data were fitted by the Langmuir and Freundlich isotherms, indicating a monolayer adsorption phenomenon consistent with the previously proposed ion-pair adsorption mechanism

    Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater

    Get PDF
    This work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6 g L−1) and dissolved oxygen in solution (absence/presence) were studied. Lastly, the influence of phosphate, carbonate, and nitrate presence at different concentrations (50, 150, 350, and 500 mg L−1) on CN− elimination was tested. Additionally, the electric energy per order (EEO), a measure of the energy consumption in the process was determined, and a mechanistic view of CN− degradation was proposed. The results show that photolysis and alkaline activation of PS degraded 8 and 11% of CN−, respectively, whereas their combination presented a synergistic effect on CN− pollutant elimination. While oxygen had a vital role in photolysis due to the formation of 1O2 to oxidize CN− to CNO−, HO• and SO4•− were primarily responsible for CN− degradation by UVC/PS. It was also found that cyanide removal followed a pseudo-first-order kinetics whose apparent reaction rate constant (k) increased from 0.0104 to 0.0297 min−1 as the initial concentration of PS increased from 0.2 to 0.6 g L−1, indicating a strong dependency of the removal efficiency on the PS amount. Remarkably, cyanide degradation by the combined UVC/PS showed a high CN− conversion and selectivity even in the presence of high concentrations of phosphate, carbonate, and nitrate ions (500 mg L−1), which resulted in CN− removals higher than 80% after 60 min of degradation treatment. Furthermore, the EEO values were similar in the presence and absence of phosphate or carbonate; however, they decreased slightly with nitrate presence. All these results suggest the feasibility of the combined UVC/PS process for the elimination of cyanide such as that found in mining wastewater
    • …
    corecore