1,632 research outputs found

    Ti-MCM-41 materials synthesised at room temperature as catalysts for cyclisation of (±)-citronellal”

    Get PDF
    In the present work we extend the applicability of those Ti-MCM-41 materials, as heterogeneous catalysts, to produce an important intermediate, isopulegol, from the cyclisation of citronellal. The use of this kind of materials appears to be a good option over homogeneous catalysts, because they offer the advantage of recovery and, consequently, contribute to environmentally friendly processes

    In vitroandin vivoassessment of the effect ofLaurus novocanariensisoil and essential oil in human skin

    Get PDF
    Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation.info:eu-repo/semantics/publishedVersio

    Compostos bioativos e atividade antioxidante em cálices de hibísco (Hibiscus sabdariffa L.).

    Get PDF
    bitstream/item/31489/1/comunicado-213.pd

    Effects of hydroxycinnamic acids on the glycolysis pathway

    Get PDF
    Glycolysis is a metabolic pathway vital to the production of energy and some organisms rely on it solely to meet their energy requirements. It is also a central pathway in the metabolism of carbohydrates and a source of therapeutic targets against diabetes and cancer. Caffeoylquinic acids (CQAs) have been extensively studied for their role in the treatment and prevention of diabetes (and cancer) but their mechanisms of action remain mostly unknown. As such, molecular docking was used to find possible targets of CQAs in the glycolysis pathway. The molecular docking assays showed that CQAs were docked preferably to the Rossman fold (nicotinamide adenine dinucleotide — NAD(H) binding site) of oxidoreductases, that use NAD(H) as a cofactor, than to any other site. In-vitro assays were then performed using two NAD(H) dependent oxidoreductases from glycolysis (alcohol dehydrogenase and L-lactate dehydrogenase) in order confirm if CQAs would compete with the cofactor to inhibit the reaction. The results from these assays indicate that CQAs can act as both inhibitors and activators of NAD(H) dependent oxidoreductases of the glycolysis pathway.info:eu-repo/semantics/publishedVersio

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    When epigenetics meets bioengineering—A material characteristics and surface topography perspective

    Full text link
    The field of tissue engineering and regenerative medicine (TE/RM) involves regeneration of tissues and organs using implantable biomaterials. The term epigenetics refers to changes in gene expression that are not encoded in the DNA sequence, leading to remodeling of the chromatin and activation or inactivation of gene expression. Recently, studies have demonstrated that these modifications are influenced not only by biological cues but also by mechanical and topographical signals. This review highlights the current knowledge on emerging approaches in TE/RM with a focus on the effect of materials and topography on the epigenetic expression pattern in cells with potential impacts on modulating regenerative biology. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2065–2071, 2018.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144628/1/jbmb33953.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144628/2/jbmb33953_am.pd
    • …
    corecore