3,838 research outputs found

    In-depth description of Electrohydrodynamic conduction pumping of dielectric liquids: physical model and regime analysis

    Get PDF
    In this work, we discuss the fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids. We build a mathematical model of conduction pumping that can be applied to all sizes, down to microsized pumps. In order to do this, we discuss the relevance of the Electrical Double Layer (EDL) that appears naturally on nonmetallic substrates. In the process, we identify a new dimensionless parameter related to the value of the zeta potential of the substrate-liquid pair, which quantifies the influence of these EDLs on the performance of the pump. This parameter also describes the transition from EHD conduction pumping to electro-osmosis. We also discuss in detail the two limiting working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter, accounting for the electric field enhanced dissociation that, along with the conduction number, allows us to identify in which regime the pump operates.Ministerio de Ciencia, Innovación y Universidades PGC2018-099217-B-I0

    Stripe domains in electrodeposited Ni90Fe10 thin films

    Full text link
    Here we have investigated the formation of stripe domains in electrodeposited Ni90Fe10 films, a metallic alloy with relevant magnetoelastic properties. The X-ray diffractometry patterns confirm the deposition of NiFe with an experimental lattice parameter close to the theoretical value. We have analyzed the influence of both magnetic stirring and an applied magnetic field perpendicular to the sample plane on the formation of stripe domains in Ni90Fe10 films. It is observed the characteristic fingerprint of stripe domains, i.e. the transcritical shape in the in-plane hysteresis loops when the electrolyte is not magnetically stirred during electrodeposition. The quality factor reveals a moderate perpendicular magnetic anisotropy which is confirmed by the stripe periodicity inferred by Magnetic Force Microscopy. In particular, stripe domains are only visible by this technique when the sample thickness is well above the theoretical critical thickness for the stripe domains to be formed. Finally, in samples released after being grown in outward bent flexible substrates it has been promoted an induced in-plane magnetoelastic magnetic anisotropy that reduces the perpendicular magnetic anisotropy. The high quality of the samples studied in this work from the magnetoelastic point of view is reflected by the magnetostriction constant of −22 ppm that it has been experimentally inferre

    Mechanical properties of freely suspended atomically thin dielectric layers of mica

    Full text link
    We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5, Number 8 (2012

    Phase-Locking of Vortex Lattices Interacting with Periodic Pinning

    Full text link
    We examine Shapiro steps for vortex lattices interacting with periodic pinning arrays driven by AC and DC currents. The vortex flow occurs by the motion of the interstitial vortices through the periodic potential generated by the vortices that remain pinned at the pinning sites. Shapiro steps are observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps occuring for fields where the interstitial vortex lattice has a high degree of symmetry. The widths of the phase-locked current steps as a function of the magnitude of the AC driving are found to follow a Bessel function in agreement with theory.Comment: 5 pages 5 postscript figure

    Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    Get PDF
    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young's modulus and the initial pre-tension of the nanosheets are determined by performing a nanoscopic version of a bending test experiment. MoS2 sheets show high elasticity and an extremely high Young's modulus (0.30 TPa, 50% larger than steel). These results make them a potential alternative to graphene in applications requiring flexible semiconductor materials

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure

    Survival of a submarine canyon during long-term outbuilding of a continental margin

    Get PDF
    Net-depositional submarine canyons are common in continental slope strata, but how they survive and prograde on constructional margins is poorly understood. In this study we present field evidence for the coevolution of a submarine canyon and the adjacent continental slope. Using a three-dimensional seismic data cube that images the Ebro margin (northwest Mediterranean), we identify a preserved canyon on a middle Pleistocene paleosurface and relate it directly to its expression on the present-day seafloor. A subparallel stacking pattern of seismic reflectors, similar to that seen between prograding clinoforms in intercanyon areas, is observed between the modern and paleocanyon thalwegs. The concavity of the modern long profile differs from the convex-concave long profile on the middle Pleistocene surface, suggesting a long-term change in canyon sedimentation. We interpret this change as a shift to a canyon dominated by turbidity currents from one strongly influenced by the pattern of sedimentation that built the open-slope canyon interfluves. We find support for our interpretation in previous studies of the Ebro margin

    Commensurate and Incommensurate Vortex States in Superconductors with Periodic Pinning Arrays

    Full text link
    As a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations in systems with square or triangular arrays of pinning sites. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays [K. Harada et al., Science 274, 1167 (1996)].Comment: 9 pages, 3 figures. Accepted to Physical Review

    Symmetry Breakdown in Franckeite: Spontaneous Strain, Rippling, and Interlayer Moire

    Get PDF
    Franckeite is a naturally occurring layered mineral with a structure composed of alternating stacks of SnS2-like and PbS-like layers. Although this superlattice is composed of a sequence of isotropic two-dimensional layers, it exhibits a spontaneous rippling that makes the material structurally anisotropic. We demonstrate that this rippling comes hand in hand with an inhomogeneous in-plane strain profile and anisotropic electrical, vibrational, and optical properties. We argue that this symmetry breakdown results from a spatial modulation of the van der Waals interaction between layers due to the SnS2-like and PbS-like lattices incommensurability
    corecore