823 research outputs found

    CP, T and CPT violation in future long baseline experiments

    Get PDF
    I give a short overview about the possibilities and problems related to the measurement of CP violation in long baseline experiments. Special attention is paid to the issue of degeneracies and a method for their resolution is quantitatively discussed. The CP violation reach for different experiments is compared in dependence of sin22θ13\sin^22\theta_{13} and \dm{21}. Furthermore a short comment about the possible effects of matter induced T violation is made. Finally the limits on CPT violation obtainable at a neutrino factory are shown.Comment: Talk presented at NUFACT02, London, 1-6 July, 2002. 3 pages, 2 figure

    Physics Potential of the SPL Super Beam

    Get PDF
    Performances of a neutrino beam generated by the CERN SPL proton driver are computed considering a 440 kton water Cerenkov detector at 130 km from the target. θ13\theta_{13} sensitivity down to 1.21.2^\circ and a δ\delta sensitivity comparable to a Neutrino Factory, for θ133\theta_{13} \geq 3^\circ, are within the reach of such a project.Comment: Invited talk at the Nufact02 Workshop, Imperial College of Science, Technology and Medicine, London, July 200

    Long-term properties and end-of-life of polymers from renewable resources

    Get PDF
    The long-term properties and end-of-life of polymers are not antagonist issues. They actually are inherently linked by the duality between durability and degradation. The control of the service-todisposal pathway at useful performance, along with low-impact disposal represents an added-value. Therefore, the routes of design, production, and discarding of bio-based polymers must be carefully strategized. In this sense, the combination of proper valorisation techniques, i.e. material, energetic and/ or biological at the most appropriate stage should be targeted. Thus, the consideration of the end-of-life of a material for a specific application, instead of the end-of-life of a material should be the fundamental focus. This review covers the key aspects of lab-scale techniques to infer the potential of performance and valorisation of polymers from renewable resources as a key gear for sustainability

    Suitability of Blends from Virgin and Reprocessed Polylactide: Performance and Energy Valorization Kinetics

    Get PDF
    A blending strategy of virgin and reprocessed polylactide may be postulated as an alternative to reduce the material cost at industrial level, and as a valorization route to plastic waste management of production scraps. The performance of blends prepared from virgin polylactide and polylactide mechanically reprocessed up to two cycles (PLA-V/R) was assessed in terms of thermo-oxidative stability, morphology, viscoelasticity and thermal kinetics for energetic valorization. PLA-V/R blends showed appropriate thermo-oxidative stability. The amorphous nature of polylactide was preserved after blending. The viscoelastic properties showed an increment of the mechanical blend effectiveness, which suggested the feasibility of using PLA-V/R blends under similar mechanical conditions to those of virgin PLA goods. Finally, it was shown that the energetic valorization of PLA-V/R blends would result in a more feasible process, due to the lower required activation energy, thus highlighting the advantages of the energetic demand for the process. In conclusion, PLA-V/R blends showed similar processability, service performance and valorization routes as virgin PLA and therefore could be relevant in the sustainable circular industry of bioplastics

    A note about the t`Hooft`s ansatz for SU(N) real time guage theories

    Full text link
    The t`Hooft's ansatz reduces the classical Yang--Mills theory to the λϕ4\lambda\phi^4 one. It is shown that in the frame of this ansatz the real-time classical solutions for the arbitrary SU(N) gauge group is obtained by embedding SU(2)×SU(2)SU(2)\times SU(2) into SU(N). It is argued that this group structure is the only possibility in the frame of the considered ansatz. New explicit solutions for SU(3) and SU(5) gauge groups are shown

    Unveiling Neutrino Mixing and Leptonic CP Violation

    Get PDF
    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13\theta_{13} and the CP-phase δ\delta. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.Comment: Invited brief review, 18 pages, 6 figure

    Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications

    Get PDF
    The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20-30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications

    Influence of the Molecular Weight on PVA/GO Composite Membranes for Fuel Cell Applications

    Get PDF
    Composite polymer electrolyte membranes were prepared with poly (vinyl alcohol) (PVA). Two different molecular weight (Mw), 67·103 and 130·103 g·mol−1 were selected, cross-linked with sulfosuccinic acid (SSA) and doped graphene oxide (GO). The effects on the membranes obtained from these polymers were characterized in order to evaluate the fuel cell performance. Electron microscopy showed a proper nanoparticle distribution in the polymer matrix. The chemical structure was evaluated by Fourier transform infrared spectroscopy. The absence of a crystalline structure and the enhancement on the thermal stability with the addition of 1% of GO was demonstrated by thermal characterization. Total transference number and protonic conductivity were correlated to the performance of a hydrogen fuel cell. Overall, a power increase in the composite membranes with lower molecular weight was observed. Shorter polymer chains may improve protonic conductivity and consequently the fuel cell performance

    Effect of the dissolution time into an acid hydrolytic solvent to taylor electrospun nanofibrous polycaprolactone scaffolds

    Get PDF
    The hydrolysis of the polycaprolactone (PCL) as a function of the dissolution time in a formic/ acetic acid mixture was considered as a method for tailoring the morphology of nanofibrous PCL scaffolds. Hence, the aim of this research was to establish a correlation between the dissolution time of the polymer in the acid solvent with the physicochemical properties of the electrospun nanofibrous scaffolds and their further service life behaviour. The physico-chemical properties of the scaffolds were assessed in terms of fibre morphology, molar mass and thermal behaviour. A reduction of the molar mass and the lamellar thickness as well as an increase of the crystallinity degree were observed as a function of dissolution time. Bead-free fibres were found after 24 and 48 h of dissolution time, with similar diameter distributions. The decrease of the fibre diameter distributions along with the apparition of beads was especially significant for scaffolds prepared after 72 h and 120 h of dissolution time in the acid mixture. The service life of the obtained devices was evaluated by means of in vitro validation under abiotic physiological conditions. All the scaffolds maintained the nanofibrous structure after 100 days of immersion in water and PBS. The molar mass was barely affected and the crystallinity degree and the lamellar thickness increased along immersion, preventing scaffolds from degradation. Scaffolds prepared after 24 h and 48 h kept their fibre diameters, whereas those prepared after 72 h and 120 h showed a significant reduction. This PCL tailoring procedure to obtain scaffolds that maintain the nanoscaled structure after such long in vitro evaluation will bring new opportunities in the design of longterm biomedical patches
    corecore