7 research outputs found

    LIPG endothelial lipase and breast cancer risk by subtypes

    Get PDF
    Experimental data showed that endothelial lipase (LIPG) is a crucial player in breast cancer. However, very limited data exists on the role of LIPG on the risk of breast cancer in humans. We examined the LIPG-breast cancer association within our population-based case–control study from Galicia, Spain, BREOGAN (BREast Oncology GAlicia Network). Plasma LIPG and/or OxLDL were measured on 114 breast cancer cases and 82 controls from our case–control study, and were included in the present study. The risk of breast cancer increased with increasing levels of LIPG (multivariable OR for the highest category (95% CI) 2.52 (1.11–5.81), P-trend = 0.037). The LIPG-breast cancer association was restricted to Pre-menopausal breast cancer (Multivariable OR for the highest LIPG category (95% CI) 4.76 (0.94–28.77), P-trend = 0.06, and 1.79 (0.61–5.29), P-trend = 0.372, for Pre-menopausal and Post-menopausal breast cancer, respectively). The LIPG-breast cancer association was restricted to Luminal A breast cancers (Multivariable OR for the highest LIPG category (95% CI) 3.70 (1.42–10.16), P-trend = 0.015, and 2.05 (0.63–7.22), P-trend = 0.311, for Luminal A and non-Luminal A breast cancers, respectively). Subset analysis only based on HER2 receptor indicated that the LIPG-breast cancer relationship was restricted to HER2-negative breast cancers (Multivariable OR for the highest LIPG category (95% CI) 4.39 (1.70–12.03), P-trend = 0.012, and 1.10 (0.28–4.32), P-trend = 0.745, for HER2-negative and HER2-positive tumors, respectively). The LIPG-breast cancer association was restricted to women with high total cholesterol levels (Multivariable OR for the highest LIPG category (95% CI) 6.30 (2.13–20.05), P-trend = 0.018, and 0.65 (0.11–3.28), P-trend = 0.786, among women with high and low cholesterol levels, respectively). The LIPG-breast cancer association was also restricted to non-postpartum breast cancer (Multivariable OR for the highest LIPG category (95% CI) 3.83 (1.37–11.39), P-trend = 0.003, and 2.35 (0.16–63.65), P-trend = 0.396, for non-postpartum and postpartum breast cancer, respectively), although we lacked precision. The LIPG-breast cancer association was more pronounced among grades II and III than grade I breast cancers (Multivariable ORs for the highest category of LIPG (95% CI) 2.73 (1.02–7.69), P-trend = 0.057, and 1.90 (0.61–6.21), P-trend = 0.170, for grades II and III, and grade I breast cancers, respectively). No association was detected for OxLDL levels and breast cancer (Multivariable OR for the highest versus the lowest category (95% CI) 1.56 (0.56–4.32), P-trend = 0.457)The BREast Oncology GAlician Network (BREOGAN) is funded by FIS ISCIII/PI12/02125 and PI17/00918 Acción Estratégica de Salud del Instituto de Salud Carlos III / Cofinanciado FEDER; FIS Intrasalud PI13/01136; Programa Grupos Emergentes, Cancer Genetics Unit, CHUVI Vigo Hospital, Instituto de Salud Carlos III, Spain; Grant 10CSA012E, Consellería de Industria Programa Sectorial de Investigación Aplicada, PEME I+D e I+D Suma del Plan Gallego de Investigación, Desarrollo e Innovación Tecnológica de la Consellería de Industria de la Xunta de Galicia, Spain; Grant EC11-192. Fomento de la Investigación Clínica Independiente, Ministerio de Sanidad, Servicios Sociales e Igualdad, Spain; and Grant FEDER-Innterconecta. Ministerio de Economia y Competitividad, Xunta de Galicia, Spain. MM funded by the Spanish Ministry of Science, Innovation and Universities under Grant RTI2018-099646-B-I00, the Consellerı́a de Educación, Universidade e Formación Profesional and the European Regional Development Fund under Grant ED431G-2019/04S

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.NovartisEli Lilly and CompanyAstraZenecaAbbViePfizer UKCelgeneEisaiGenentechMerck Sharp and DohmeRocheCancer Research UKGovernment of CanadaArray BioPharmaGenome CanadaNational Institutes of HealthEuropean CommissionMinistère de l'Économie, de l’Innovation et des Exportations du QuébecSeventh Framework ProgrammeCanadian Institutes of Health Researc

    Systematic Review and Meta-analysis of Testicular Germ Cell Tumors Following In Utero Exposure to Diethylstilbestrol

    No full text
    Background: Early exposure to estrogen-like compounds has been implicated in the etiology of testicular cancer, but individual level epidemiologic data addressing this hypothesis are scarce. The synthetic estrogen diethylstilbestrol (DES) was administered during pregnancy from 1948 to 1971, but sequelae of in utero exposure have been more extensively characterized in females than in males. Methods: By systematic review, we sought to identify all epidemiologic research relating testicular cancer to a history of in utero exposure to diethylstilbestrol. Identified studies were critically appraised to assemble a set of nonredundant data in which any in utero exposure to DES was compared between men with incident testicular cancer and cancer-free men. These data were synthesized using random effects meta-analysis to estimate the summary association between in utero DES exposure and testicular cancer. Results: By meta-analysis of data from the six qualifying studies, the summary odds ratio estimate of the in utero DES-testicular cancer association was 2.98 (95% confidence interval = 1.15 to 7.67). Conclusions: Results of this comprehensive meta-analysis accord with a threefold increase in testicular cancer risk among men who were exposed in utero to DES, implicating early hormonal exposures in etiology of testicular cancer. Because use of DES ceased in 1971, this work may provide the most comprehensive estimate of this association that will be made

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    No full text
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer

    Genome-wide association study of germline variants and breast cancer-specific mortality

    No full text
    BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 x 10(-8). For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 x 10(-7), hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 x 10(-7), HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients
    corecore