37 research outputs found
Congenital Diarrheal Disorders: An Updated Diagnostic Approach
Congenital diarrheal disorders (CDDs) are a group of inherited enteropathies with a typical onset early in the life. Infants with these disorders have frequently chronic diarrhea of sufficient severity to require parenteral nutrition. For most CDDs the disease-gene is known and molecular analysis may contribute to an unequivocal diagnosis. We review CDDs on the basis of the genetic defect, focusing on the significant contribution of molecular analysis in the complex, multistep diagnostic work-up
Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea
Background: Congenital chloride diarrhea (CLD) is an autosomal recessive disorder characterized by life-long, severe diarrhea with intestinal Cl - malabsorption. It results from a reduced activity of the down regulated in adenoma exchanger (DRA), due to mutations in the solute carrier family 26, member 3 (SLC26A3) gene. Currently available therapies are not able to limit the severity of diarrhea in CLD. Conflicting results have been reported on the therapeutic efficacy of oral butyrate. Methods. We investigated the effect of oral butyrate (100 mg/kg/day) in seven CLD children with different SLC26A3 genotypes. Nasal epithelial cells were obtained to assess the effect of butyrate on the expression of the two main Cl- transporters: DRA and putative anion transporter-1 (PAT-1). Results: A variable clinical response to butyrate was observed regarding the stool pattern and fecal ion loss. The best response was observed in subjects with missense and deletion mutations. Variable response to butyrate was also observed on SLC26A3 (DRA) and SLC26A6 (PAT1) gene expression in nasal epithelial cells of CLD patients. Conclusions: We demonstrate a genotype-dependency for butyrate therapeutic efficacy in CLD. The effect of butyrate is related in part on a different modulation of the expression of the two main apical membrane Cl- exchangers of epithelial cells, members of the SLC26 anion family. Trial registration. Australian New Zealand Clinical trial Registry ACTRN1261300045071
Friedreich ataxia patient tissues exhibit increased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXN locus
© 2013 Al-Mahdawi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 242193/EFACTS (CS), the Wellcome Trust [089757] (SA) and Ataxia UK (RMP) to MAP
Survival after Locoregional Treatments for Hepatocellular Carcinoma: A Cohort Study in Real-World Patients
Evidence of relative effectiveness of local treatments for hepatocellular carcinoma (HCC) is scanty. We investigated, in a retrospective cohort study, whether surgical resection, radiofrequency ablation (RFA), percutaneous ethanol injection (PEI), and transarterial embolization with (TACE) or without (TAE) chemotherapy resulted in different survival in clinical practice. All patients first diagnosed with HCC and treated with any locoregional therapy from 1998 to 2002 in twelve Italian hospitals were eligible. Overall survival (OS) was the unique endpoint. Three main comparisons were planned: RFA versus PEI, surgical resection versus RFA/PEI (combined), TACE/TAE versus RFA/PEI (combined). Propensity score method was used to minimize bias related to non random treatment assignment. Overall 425 subjects were analyzed, with 385 (91%) deaths after a median followup of 7.7 years. OS did not significantly differ between RFA and PEI (HR 1.11, 95% CI 0.79–1.57), between surgery and RFA/PEI (HR 0.95, 95% CI 0.64–1.41) and between TACE/TAE and RFA/PEI (HR 0.88, 95% CI 0.66–1.17). 5-year OS probabilities were 0.14 for RFA, 0.18 for PEI, 0.27 for surgery, and 0.15 for TACE/TAE. No locoregional treatment for HCC was found to be more effective than the comparator. Adequately powered randomized clinical trials are still needed to definitely assess relative effectiveness of locoregional HCC treatment
Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia
Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program
Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
Social cognition in people with schizophrenia: A cluster-analytic approach
Background The study aimed to subtype patients with schizophrenia on the basis of social cognition (SC), and to identify cut-offs that best discriminate among subtypes in 809 out-patients recruited in the context of the Italian Network for Research on Psychoses. Method A two-step cluster analysis of The Awareness of Social Inference Test (TASIT), the Facial Emotion Identification Test and Mayer-Salovey-Caruso Emotional Intelligence Test scores was performed. Classification and regression tree analysis was used to identify the cut-offs of variables that best discriminated among clusters. Results We identified three clusters, characterized by unimpaired (42%), impaired (50.4%) and very impaired (7.5%) SC. Three theory-of-mind domains were more important for the cluster definition as compared with emotion perception and emotional intelligence. Patients more able to understand simple sarcasm (14 for TASIT-SS) were very likely to belong to the unimpaired SC cluster. Compared with patients in the impaired SC cluster, those in the very impaired SC cluster performed significantly worse in lie scenes (TASIT-LI <10), but not in simple sarcasm. Moreover, functioning, neurocognition, disorganization and SC had a linear relationship across the three clusters, while positive symptoms were significantly lower in patients with unimpaired SC as compared with patients with impaired and very impaired SC. On the other hand, negative symptoms were highest in patients with impaired levels of SC. Conclusions If replicated, the identification of such subtypes in clinical practice may help in tailoring rehabilitation efforts to the person's strengths to gain more benefit to the person
Philosophia ludens nella Scuola dell’Infanzia. «È un filo che / assomiglia al fil di ferro / ma non è»
We narrate here the workshops held at a nursery school with Philosophia ludens method. Three lessons to play with questions, with identity and difference and to dream of untimely cities. The paper presents literally the dialogues with the children and in this way shows clearly the proposal and its effectiveness.Viene qui raccontato il percorso fatto in una Scuola dell’Infanzia con il metodo Philosophia ludens. Tre incontri per giocare con le domande, con l’identità e la differenza e per sognare città inattuali. La presentazione letterale dei dialoghi con i bambini rende fresca la proposta e mostra chiaramente la sua efficacia