7 research outputs found

    Pronostic obstétrical des patientes ayant une malformation utérine liée a l'exposition in utero au diethylstilbestrol. Place de l'hystéroplastie d'agrandissement

    No full text
    PARIS5-BU Méd.Cochin (751142101) / SudocPARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF

    Prenatal Ultrasound Suspicion of Cystic Fibrosis in a Multiethnic Population: Is Extensive CFTR Genotyping Needed?

    No full text
    International audienceIn families without a Cystic Fibrosis (CF) history, fetal ultrasound bowel abnormalities can unexpectedly reveal the disease. Isolated or in association, the signs can be fetal bowel hyperechogenicity, intestinal loop dilatation and non-visualization of fetal gallbladder. In these cases, search for CF transmembrane conductance regulator (CFTR) gene mutations is part of the recommended diagnostic practices, with a search for frequent mutations according to ethnicity, and, in case of the triad of signs, with an exhaustive study of the gene. However, the molecular diagnosis remains a challenge in populations without well-known frequent pathogenic variants. We present a multiethnic cohort of 108 pregnancies with fetal bowel abnormalities in which the parents benefited from an exhaustive study of the CFTR gene. We describe the new homozygous p.Cys1410* mutation in a fetus of African origin. We did not observe the most frequent p.Phe508del mutation in our cohort but evidenced variants undetected by our frequent mutations kit. Thanks to the progress of sequencing techniques and despite the difficulties of interpretation occasionally encountered, we discuss the need to carry out a comprehensive CFTR study in all patients in case of fetal bowel abnormalities

    Should prenatal chromosomal microarray analysis be offered for isolated fetal growth restriction? A French multicenter study

    No full text
    International audienceBackground: Compared with standard karyotype, chromosomal microarray analysis improves the detection of genetic anomalies and is thus recommended in many prenatal indications. However, evidence is still lacking on the clinical utility of chromosomal microarray analysis in cases of isolated fetal growth restriction.Objective: This study aimed to estimate the proportion of copy number variants detected by chromosomal microarray analysis and the incremental yield of chromosomal microarray analysis compared with karyotype in the detection of genetic abnormalities in fetuses with isolated fetal growth restriction.Study design: This retrospective study included all singleton fetuses diagnosed with fetal growth restriction and no structural ultrasound anomalies and referred to 13 French fetal medicine centers over 1 year in 2016. Fetal growth restriction was defined as an estimated fetal weight of <tenth percentile for gestational age identified in ultrasound reports. For this analysis, we selected fetuses who underwent invasive genetic testing with karyotype and chromosomal microarray analysis results. Data were obtained from medical records and ultrasound databases and postmortem and placental examination reports in case of spontaneous stillbirths and terminations of pregnancy. Following the American College of Medical Genetics and Genomics guidelines, copy number variants were classified into 5 groups as following: pathogenic, likely pathogenic, variant of unknown significance, likely benign, and benign.Results: Of 682 referred fetuses diagnosed with isolated fetal growth restriction, both karyotype and chromosomal microarray analysis were performed in 146 fetuses. Overall, the detection rate of genetic anomalies found by chromosomal microarray analysis was estimated to be 7.5% (11 of 146 [95% confidence interval, 3.3-11.8]), including 10 copy number variants classified as pathogenic and 1 copy number variant classified as likely pathogenic. Among the 139 fetuses with normal karyotype, 5 were detected with pathogenic and likely pathogenic copy number variants, resulting in an incremental yield of 3.6% (95% confidence interval, 0.5-6.6) in chromosomal microarray analysis compared with karyotype. All fetuses detected with pathogenic or likely pathogenic copy number variants resulted in terminations of pregnancy. In addition, 3 fetuses with normal karyotype were detected with a variant of unknown significance (2.1%). Among the 7 fetuses with abnormal karyotype, chromosomal microarray analysis did not detect trisomy 18 mosaicism in all fetuses.Conclusion: Our study found that compared with karyotype, chromosomal microarray analysis improves the detection of genetic anomalies in fetuses diagnosed with isolated fetal growth restriction. These results support the use of chromosomal microarray analysis in addition to karyotype for isolated fetal growth restriction

    Strategy for Use of Genome-Wide Non-Invasive Prenatal Testing for Rare Autosomal Aneuploidies and Unbalanced Structural Chromosomal Anomalies

    No full text
    International audienceAtypical fetal chromosomal anomalies are more frequent than previously recognized and can affect fetal development. We propose a screening strategy for a genome-wide non-invasive prenatal test (NIPT) to detect these atypical chromosomal anomalies (ACAs). Two sample cohorts were tested. Assay performances were determined using Cohort A, which consisted of 192 biobanked plasma samples-42 with ACAs, and 150 without. The rate of additional invasive diagnostic procedures was determined using Cohort B, which consisted of 3097 pregnant women referred for routine NIPT. Of the 192 samples in Cohort A, there were four initial test failures and six discordant calls; overall sensitivity was 88.1% (37/42; CI 75.00-94.81) and specificity was 99.3% (145/146; CI 96.22-99.88). In Cohort B, there were 90 first-pass failures (2.9%). The rate of positive results indicating an anomaly was 1.2% (36/3007) and 0.57% (17/3007) when limited to significant unbalanced chromosomal anomalies and trisomies 8, 9, 12, 14, 15, 16, and 22. These results show that genome-wide NIPT can screen for ACAs with an acceptable sensitivity and a small increase in invasive testing, particularly for women with increased risk following maternal serum screening and by limiting screening to structural anomalies and the most clinically meaningful trisomies

    In utero ultrasound diagnosis of corpus callosum agenesis leading to the identification of orofaciodigital type 1 syndrome in female fetuses

    No full text
    International audienceBACKGROUND:OFD1 syndrome is a rare ciliopathy inherited on a dominant X-linked mode, typically lethal in males in the first or second trimester of pregnancy. It is characterized by oral cavity and digital anomalies possibly associated with cerebral and renal signs. Its prevalence is between 1/250,000 and 1/50,000 births. It is due to heterozygous mutations of OFD1 and mutations are often de novo (75%). Familial forms show highly variable phenotypic expression. OFD1 encodes a protein involved in centriole growth, distal appendix formation, and ciliogenesis.CASES:We report the investigation of three female fetuses in which corpus callosum agenesis was detected by ultrasound during the second trimester of pregnancy. In all three fetuses, fetopathological examination allowed the diagnosis of OFD1 syndrome, which was confirmed by molecular analysis.CONCLUSIONS:To our knowledge, these are the first case reports of antenatal diagnosis of OFD1 syndrome in the absence of familial history, revealed following detection of agenesis of the corpus callosum. They highlight the impact of fetal examination following termination of pregnancy for brain malformations. They also highlight the contribution of ciliary genes to corpus callosum development.© 2017 Wiley Periodicals, Inc
    corecore