85 research outputs found

    Wood anatomical traits highlight complex temperature influence on Pinus cembra L. at high elevation in the Eastern Alps

    Get PDF
    In the context of climate change, scientific community is raising attention on tree response to increasing temperature. In this sense, populations at the edge of their distributional area are crucial to understand the species climate sensitivity. Pinus cembra is of particular interest being a typical high-elevation taxon, spread with mostly scattered populations within its range. Despite its potential, this species is traditionally disregarded by dendrochronological studies because of its low tree-ring variability and climate sensitivity. In this study, we tested the potential of dendroanatomy of this species, analysing time series of xylem anatomical traits of nine trees at the species elevation limit. We measured the mean ring width (MRW) and cell number (CN) per ring. Besides, to improve the time resolution of climate/growth associations, we split each ring in ten sectors, on which we measured the mean lumen area (LA) and both radial and tangential cell-wall thickness (CWTRad and CWTTan). These parameters, assessed on 1.5 7106 tracheids, were correlated with monthly and fortnightly climatic data, obtained by the daily climate records over 89 years (1926-2014). The most important factors affecting xylem features were late-spring and summer temperatures. LA and CWT showed a stronger temperature response than MRW, starting from mid-May and early June, respectively. CWT evidenced the longest period of response to temperature, with a significant difference between CWTRad and CWTTan. Analysis of xylem anatomical traits at intra-ring level and the use of daily temperature records proved to be useful for high resolution and detailed climate/growth association inferences in Pinus cembra

    Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers

    Get PDF
    The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926–2012) consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1–10 days offset) between the periods when anatomical traits had significant correlations with temperature in recent decades (1969–2012) and available xylogenesis data (1996–2005), previously collected at the same site. Yet, results for the 1926–1968 period indicate a later onset and earlier ending of the cambial activity by 6–30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4–5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context

    TP and OJP xylem anatomical chronologies

    No full text
    Turkey Point, Ontario, Canada Old Jack Pine, Saskatchewan, Canada 1970-201
    • …
    corecore