11 research outputs found

    Spectrophotometric Measurement of Carbonate Ion in Seawater over a Decade: Dealing with Inconsistencies

    Get PDF
    The spectrophotometric methodology for carbonate ion determination in seawater was first published in 2008 and has been continuously evolving in terms of reagents and formulations. Although being fast, relatively simple, affordable, and potentially easy to implement in different platforms and facilities for discrete and autonomous observations, its use is not widespread in the ocean acidification community. This study uses a merged overdetermined CO2 system data set (carbonate ion, pH, and alkalinity) obtained from 2009 to 2020 to assess the differences among the five current approaches of the methodology through an internal consistency analysis and discussing the sources of uncertainty. Overall, the results show that none of the approaches meet the climate goal (± 1 % standard uncertainty) for ocean acidification studies for the whole carbonate ion content range in this study but usually fulfill the weather goal (± 10 % standard uncertainty). The inconsistencies observed among approaches compromise the consistency of data sets among regions and through time, highlighting the need for a validated standard operating procedure for spectrophotometric carbonate ion measurements as already available for the other measurable CO2 variables.4,84

    Air-sea CO2 fluxes in the Atlantic as measured during the FICARAM cruises

    Get PDF
    A total of fourteen hydrographic cruises spanning from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean, under the framework of the Spanish research project FICARAM. The performed underway measurements are processed and analysed to describe the meridional air-sea CO2 fluxes (F CO2) along the Atlantic Ocean. The data was organised into different biogeochemical oceanographic provinces, according mainly to the thermohaline characteristics. The obtained spatial and temporal distributions of F CO2 follow the generally expected patterns and annual trends. The Subtropical regions in both hemispheres alternated the CO2 source and sink nature from autumn to spring, respectively. On the other hand, Tropical waters and the Patagonian Sea clearly behaved as sinks of atmospheric CO2 like the waters of the Drake Passage during autumn. The obtained results during the cruises also revealed significant long-term trends, such as the warming of equatorial waters (0.11±0.03 Cyr−1) and the decrease of surface salinity (−0.16±0.01 yr−1) in tropical waters caused by the influence of the Amazon River plume. This reduction in surface salinity appears to have a direct influence over the CO2 storage rates, fostering the uptake capacity of atmospheric CO2 (−0.09±0.03 molm−2 yr−1). An analysis of the biogeochemical forcing on the CO2 fugacity (fCO2) variability performed from an empirical algorithm highlighted the major role of the Amazon River input in the tropical North Atlantic fluxes. In addition, it has provided a quantitative measure of the importance of the thermodynamic control of F CO2 at temperate latitudes

    Cruise Summary Report - MEDWAVES survey. MEDiterranean out flow WAter and Vulnerable EcosystemS (MEDWAVES)

    Get PDF
    The MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) cruise targeted areas under the potential influence of the MOW within the Mediterranean and Atlantic realms. These include seamounts where Cold-water corals (CWCs) have been reported but that are still poorly known, and which may act as essential “stepping stones” connecting fauna of seamounts in the Mediterranean with those of the continental shelf of Portugal, the Azores and the Mid-Atlantic Ridge. During MEDWAVES sampling has been conducted in two of the case studies of ATLAS: Case study 7 (Gulf of Cádiz-Strait of Gibraltar-Alboran Sea) and Case study 8 (Azores). The initially targeted areas in the Atlantic were: the Gazul Mud volcano, in the Gulf of Cádiz (GoC) area, included in the case study 7, and the Atlantic seamounts Ormonde (Portuguese shelf) and Formigas (by Azores), both part of the case study 8. In the Mediterranean the targeted areas were The Guadiaro submarine canyon and the Seco de los Olivos (also known as Chella Bank) seamount. Unfortunately it was not possible to sample in Guadiaro due to time constraints originated by adverse meteorological conditions which obligate us to reduce the time at sea focusing only in 4 of the 5 initially planned areas. MEDWAVES was structured in two legs; the first leg took place from the 21st September (departure from Cádiz harbour in Spain) to the 13th October 2016 (arrival in Ponta Delgada, São Miguel, Azores, Portugal took place the 8th of October due to the meteorological conditions that obligated to conclude the first leg earlier as planned). during the Leg 1 sampling was carried out in Gazul, Ormonde and Formigas. The second leg started the 14th October (departure from Ponta Delgada) and finished the 26th October (arrival in Málaga harbour, Spain). MEDWAVES had a total of 30 effective sampling days, being 6 days not operative due to the adverse meteorological conditions experienced during the first leg which forced us to stay in Ponta Delgada from the 08th to the 13th October. During MEDWAVES the daily routine followed a similar scheme, depending of course on the weather and sea conditions. The main activity during the day, starting early in the morning (around 08:00 AM, once the night activities were finished), was the ROV deployment. Generally a single ROV dive of around 8 hours was performed, however in several occasions two dives were carried out in the same day (see General station list, Appendix II). After the ROV (and sometimes between two dives) the Box Corer and/or Van Veen Grab and/or Multicore was deployed. After these activities, during the night CTD-Rosette deployments and MB was conducted. Accordingly to this schema the scientific personnel worked in the day or in the night watch. A total of 215 sampling stations have been covered in MEDWAVES, using the following sampling gears: Multibeam echosounder, CTD-Rosette, LADCP, Box Corer, Van Veen Grab, Multicorer and a Remotely Operated Vehicle (ROV). Table 1 sumamrised the number of sampling stations conducted with each gear in each sampling zone. Additionally MB surveys have been conducted during the transits between area
    corecore