4,704 research outputs found

    Investigation of additives for improvement of adhesive and elastomer performance Final report

    Get PDF
    Improvement additives for adhesive and elastomer performanc

    In-vivo magnetic resonance imaging of hyperpolarized silicon particles

    Full text link
    Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include

    Food Security: an ODA View

    Get PDF
    Summary The usefulness of food security as a specific donor objective must be kept in perspective. Food security issues are best dealt with us a subset of poverty issues more generally; in the longer term, economic growth is the solution to both poverty and hunger. ODA's country programme planning procedure is flexible enough to incorporate food Security approaches where these are a practical and cost?effective way of designing, targeting and monitoring poverty alleviation efforts

    Making mentoring work: The need for rewiring epistemology

    Get PDF
    To help produce expert coaches at both participation and performance levels, a number of governing bodies have established coach mentoring systems. In light of the limited literature on coach mentoring, as well as the risks of superficial treatment by coach education systems, this paper therefore critically discusses the role of the mentor in coach development, the nature of the mentor-mentee relationship and, most specifically, how expertise in the mentee may best be developed. If mentors are to be effective in developing expert coaches then we consequently argue that a focus on personal epistemology is required. On this basis, we present a framework that conceptualizes mentee development on this level through a step by step progression, rather than unrealistic and unachievable leap toward expertise. Finally, we consider the resulting implications for practice and research with respect to one-on-one mentoring, communities of practice, and formal coach education

    Analysis of the charging of the SCATHA (P78-2) satellite

    Get PDF
    The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled

    Additional application of the NASCAP code. Volume 1: NASCAP extension

    Get PDF
    The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO)

    Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    Get PDF
    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs

    Assessments of Composite and Discrete Sampling Approaches for Water Quality Monitoring

    Get PDF
    peer-reviewedAchieving an operational compromise between spatial coverage and temporal resolution in national scale river water quality monitoring is a major challenge for regulatory authorities, particularly where chemical concentrations are hydrologically dependent. The efficacy of flow-weighted composite sampling (FWCS) approaches for total phosphorus (TP) sampling (n = 26–52 analysed samples per year), previously applied in monitoring programmes in Norway, Sweden and Denmark, and which account for low to high flow discharges, was assessed by repeated simulated sampling on high resolution TP data. These data were collected in three research catchments in Ireland over the period 2010–13 covering a base-flow index range of 0.38 to 0.69. Comparisons of load estimates were also made with discrete (set time interval) daily and sub-daily sampling approaches (n = 365 to >1200 analysed samples per year). For all years and all sites a proxy of the Norwegian sampling approach, which is based on re-forecasting discharge for each 2-week deployment, proved most stable (median TP load estimates of 87–98%). Danish and Swedish approaches, using long-term flow records to set a flow constant, were only slightly less effective (median load estimates of 64–102% and 80–96%, respectively). Though TP load estimates over repeated iterations were more accurate using the discrete approaches, particularly the 24/7 approach (one sample every 7 h in a 24 bottle sampler - median % load estimates of 93–100%), composite load estimates were more stable, due to the integration of multiple small samples (n = 100–588) over a deployment

    Divergences in the Effective Action for Acausal Spacetimes

    Get PDF
    The 1--loop effective Lagrangian for a massive scalar field on an arbitrary causality violating spacetime is calculated using the methods of Euclidean quantum field theory in curved spacetime. Fields of spin 1/2, spin 1 and twisted field configurations are also considered. In general, we find that the Lagrangian diverges to minus infinity at each of the nth polarised hypersurfaces of the spacetime with a structure governed by a DeWitt-Schwinger type expansion.Comment: 17 pages, Late
    • …
    corecore