215 research outputs found

    What do students do? Training, research and learning: developing skills for the next generation of near-surface geophysicists

    Get PDF
    In the past decade, degree programmes throughout Europe have changed dramatically and near-surface geophysics is now commonly taught as a minor component of other undergraduate geoscience and related degree programmes. As a consequence, there has been a distinct change in the nature, scope and content of geophysical degrees and the skills set that graduates obtain throughout their studies. As an introduction to the Special Issue on Student-based Research, this commentary article discusses the expectations of employers, the competencies and skills of our undergraduate and postgraduate students and how these have changed over time. We highlight skill gaps and suggest ways in which the near-surface geophysical community can address these needs in a pragmatic and cost efficient manner. We hope to illustrate that a greater collaboration between industry and academia is the way forward and that innovative, cross-sector approaches to student learning and research are the solution to at least some of our problems

    Time-lapse geophysical investigations over a simulated urban clandestine grave

    Get PDF
    A simulated clandestine shallow grave was created within a heterogeneous, made-ground, urban environment where a clothed, plastic resin, human skeleton, animal products, and physiological saline were placed in anatomically correct positions and re-covered to ground level. A series of repeat (time-lapse), near-surface geophysical surveys were undertaken: (1) prior to burial (to act as control), (2) 1 month, and (3) 3 months post-burial. A range of different geophysical techniques was employed including: bulk ground resistivity and conductivity, fluxgate gradiometry and high-frequency ground penetrating radar (GPR), soil magnetic susceptibility, electrical resistivity tomography (ERT), and self potential (SP). Bulk ground resistivity and SP proved optimal for initial grave location whilst ERT profiles and GPR horizontal "time-slices" showed the best spatial resolutions. Research suggests that in complex urban made-ground environments, initial resistivity surveys be collected before GPR and ERT follow-up surveys are collected over the identified geophysical anomalies

    A sensitivity analysis of the effect of pumping parameters on hydraulic fracture networks and local stresses during Shale Gas operations

    Get PDF
    The shale gas industry has significant impact on economies around the world, however, it is not without risk. One of the primary concerns is felt seismicity and recent earthquakes, caused by fault reactivation related to hydraulic fracturing operations, have escalated uncertainty about hydraulic fracturing methods. Mitigating these risks is essential for restoring public confidence in this controversial industry. We investigate the effect that changing two operational parameters (flow rate and pumping time) and differential pressure has on the flow distance, fracture network area and the minimum lateral distance that hydraulic fracturing should occur from a pre-existing fault in order not to reactivate it (lateral respect distance); thus reducing the risk of felt seismicity. Sensitivity analyses are conducted using a Monte Carlo approach. The lateral respect distance is obtained from calculations of the Coulomb stress change of the rock surrounding the injection stage, for four stress threshold values obtained from the literature. Results show that the flow rate has the smallest rate of change for fracture area (3700 m2 per 0.01 m3/s) and flow distance (8.3 m per 0.01 m3/s). We find that differential pressure has the largest impact on stimulated fracture area, when less than 2 MPa, at 31,029 m2/MPa. The pumping time has the most significant effect on the flow distance (48 m/hr) and the stress threshold value the most significant effect on the lateral respect distance. This study suggests that to reduce the lateral distance, a compromise is required between flow distance and fracture area. The results obtained by this research provide invaluable guidance for operational practice in determining the potential area of the induced fracture network and generated stress field under realistic hydraulic fracturing conditions, an important aspect for risk assessments

    Geophysical characterization of derelict coalmine workings and mineshaft detection: a case study from Shrewsbury, United Kingdom

    Get PDF
    A study site of derelict coalmine workings near Shrewsbury, United Kingdom was the focus for multi‐phase, near‐surface geophysical investigations. Investigation objectives were: 1) site characterization for remaining relict infrastructure foundations, 2) locate an abandoned coalmine shaft, 3) determine if the shaft was open, filled or partially filled and 4) determine if the shaft was capped (and if possible characterize the capping material). Phase one included a desktop study and 3D microgravity modelling of the relict coalmine shaft thought to be on site. In phase two, electrical and electromagnetic surveys to determine site resistivity and conductivity were acquired together with fluxgate gradiometry and an initial microgravity survey. Phase three targeted the phase two geophysical anomalies and acquired high‐resolution self potential and ground penetrating radar datasets. The phased‐survey approach minimised site activity and survey costs. Geophysical results were compared and interpreted to characterize the site, the microgravity models were used to validate interpretations. Relict buildings, railway track remains with associated gravel and a partially filled coalmine shaft were located. Microgravity proved optimal to locate the mineshaft with radar profiles showing ‘side‐swipe’ effects from the mineshaft that did not directly underlie survey lines. Geophysical interpretations were then verified with subsequent geotechnical intrusive investigations. Comparisons of historical map records with intrusive geotechnical site investigations show care must be taken using map data alone, as the latter mineshaft locations was found to be inaccurate

    Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone

    Get PDF
    Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20–60 cm thick hypoxic zones (50 mg L−1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation

    Horizontal respect distance for hydraulic fracturing in the vicinity of existing faults in deep geological reservoirs: A review and modelling study

    Get PDF
    Hydraulic fracturing is widely used in the petroleum industry to enhance oil and gas production, especially for the extraction of shale gas from unconventional reservoirs. A good understanding of the vertical distance which should be preserved between hydraulic stimulation and overlying aquifers (potable water) has been demonstrated as being greater than 600 metres (2000 feet). However, the effective application of this technique depends on many factors; one of particular importance is the influence of the fracturing process on pre-existing fractures and faults in the reservoir, which, however, to date, has had little analysis. Specifically, the identification of the required respect distance which must be maintained between the hydraulic fracturing location and pre-existing faults is of paramount importance in minimizing the risk of felt, induced seismicity. This must be an important consideration for setting the guidelines for operational procedures by legislative authorities. We investigate the respect distance using a Monte Carlo approach, generating fifty discrete fracture networks for each of three fracture intensities, on which a hydraulic fracturing simulation is run, using FracMan®. The Coulomb stress change of the rock surrounding the simulated injection stage is calculated for three weighted source mechanisms combining inflation, strike-slip and reverse. The lateral respect distance is obtained using values from literature of the amount of stress required to induce movement on a pre-existing fault. We find that the lateral respect distance is dependent on fracture intensity and the failure threshold. However, the weighting of the source mechanism has limited effect on the lateral respect distance

    Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK

    Get PDF
    Heat exchangers are vital to any geothermal system looking to use direct heat supplied via a district heat network. Attention on geothermal schemes in the UK has been growing, with minimal attention on the performance of heat exchangers. In this study, different types of heat exchangers are analysed for the Cheshire Basin as a case study, specifically the Crewe area, to establish their effectiveness and optimal heat transfer area. The results indicate that counter-current flow heat exchangers have a higher effectiveness than co-current heat exchangers. Optimisation of the heat exchange area can produce total savings of 43.06 pound million and 71.5 pound million, over a 25-year lifetime, in comparison with a fossil-fuelled district heat network using geothermal fluid input temperatures of 67 degrees C and 86 degrees C, respectively
    corecore