149 research outputs found
Current knowledge on the early stages of human neutropoiesis
Polymorphonuclear neutrophils are no longer considered as a homogeneous population of terminally differentiated and short-lived cells that belong to the innate immune system only. In fact, data from the past decades have uncovered that neutrophils exhibit large phenotypic heterogeneity and functional versatility that render them more plastic than previously thought. Hence, their precise role as effector cells in inflammation, in immune response and in other pathophysiological processes, including tumors, needs to be better evaluated. In such a complex scenario, common knowledge of the differentiation of neutrophils in bone marrow refers to lineage precursors, starting from the still poorly defined myeloblasts, and proceeding sequentially to promyelocytes, myelocytes, metamyelocytes, band cells, segmented neutrophils, and mature neutrophils, with each progenitor stage being more mature and better characterized. Thanks to the development and utilization of cutting-edge technologies, novel information about neutrophil precursors at stages earlier than the promyelocytes, hence closer to the hematopoietic stem cells, is emerging. Accordingly, this review discusses the main findings related to the very early precursors of human neutrophils and provides our perspectives on human neutropoiesis
Synergistic production of TNF\u3b1 and IFN\u3b1 by human pDCs incubated with IFN\u3bb3 and IL-3
In this study, we investigated whether IFN\u3bb3 and IL-3 reciprocally influence their capacity to activate various functions of human plasmacytoid dendritic cells (pDCs). In fact, we preliminarily observed that IFN\u3bb3 upregulates the expression of the IL-3R\u3b1 (CD123), while IL-3 augments the expression of IFN\u3bbR1 in pDCs. As a result, we found that combination of IFN\u3bb3 and IL-3 induces a strong potentiation in the production of TNF\u3b1, IFN\u3b1, as well as in the expression of Interferon-Stimulated Gene (ISG) mRNAs by pDCs, as compared to either IFN\u3bb3 or IL-3 alone. In such regard, we found that endogenous IFN\u3b1 autocrinally promotes the expression of ISG mRNAs in IL-3-, but not in IFN\u3bb3 plus IL-3-, treated pDCs. Moreover, we uncovered that the production of IFN\u3b1 by IFN\u3bb3 plus IL-3-treated pDCs is mostly dependent on endogenously produced TNF\u3b1. Altogether, our data demonstrate that IFN\u3bb3 and IL-3 collaborate to promote, at maximal levels, discrete functional responses of human pDCs
G-CSF–stimulated Neutrophils Are a Prominent Source of Functional BLyS
B lymphocyte stimulator (BLyS) is a novel member of the TNF ligand superfamily that is important in B cell maturation and survival. We demonstrate that human neutrophils, after incubation with G-CSF or, less efficiently, IFNγ, express high levels of BLyS mRNA and release elevated amounts of biologically active BLyS. In contrast, surface expression of the membrane-bound BLyS was not detected in activated neutrophils. Indeed, in neutrophils, uniquely among other myeloid cells, soluble BLyS is processed intracellularly by a furin-type convertase. Worthy of note, the absolute capacity of G-CSF–stimulated neutrophils to release BLyS was similar to that of activated monocytes or dendritic cells, suggesting that neutrophils might represent an important source of BLyS. In this regard, we show that BLyS serum levels as well as neutrophil-associated BLyS are significantly enhanced after in vivo administration of G-CSF in patients. In addition, serum obtained from two of these patients induced a remarkable accumulation of neutrophil-associated BLyS in vitro. This effect was neutralized by anti–G-CSF antibodies, indicating that G-CSF, present in the serum, stimulated neutrophils to produce BLyS. Collectively, our findings suggest that neutrophils, through the production of BLyS, might play an unsuspected role in the regulation of B cell homeostasis
Generation of Biologically Active Angiostatin Kringle 1–3 by Activated Human Neutrophils
AbstractThe contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1–3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1–3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule
Myeloid cells, BAFF, and IFN-γ establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice
Autoimmunity is traditionally attributed to altered lymphoid cell selection and/or tolerance, whereas the contribution of innate immune cells is less well understood. Autoimmunity is also associated with increased levels of B cell–activating factor of the TNF family (BAFF; also known as B lymphocyte stimulator), a cytokine that promotes survival of self-reactive B cell clones. We describe an important role for myeloid cells in autoimmune disease progression. Using Lyn-deficient mice, we show that overproduction of BAFF by hyperactive myeloid cells contributes to inflammation and autoimmunity in part by acting directly on T cells to induce the release of IFN-γ. Genetic deletion of IFN-γ or reduction of BAFF activity, achieved by either reducing myeloid cell hyperproduction or by treating with an anti-BAFF monoclonal antibody, reduced disease development in lyn−/− mice. The increased production of IFN-γ in lyn−/− mice feeds back on the myeloid cells to further stimulate BAFF release. Expression of BAFF receptor on T cells was required for their full activation and IFN-γ release. Overall, our data suggest that the reciprocal production of BAFF and IFN-γ establishes an inflammatory loop between myeloid cells and T cells that exacerbates autoimmunity in this model. Our findings uncover an important pathological role of BAFF in autoimmune disorders
mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes.
The acute phase response is a systemic reaction to inflammatory processes characterized by multiple physiological adaptations, including the hepatic synthesis of acute-phase proteins. In humans, serum amyloid A (SAA) is one of the most prominent of these proteins. Despite the huge increase of serum levels of SAA in inflammation, its biological role remains to be elucidated, even though SAA is undoubtedly active in neutrophils. In a previous study, we reported that SAA induces the release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-8 from human blood neutrophils. Here, we extend our earlier study, focusing on the effect of SAA on neutrophil IL-8 transcription and on the signaling pathways involved. We demonstrate herein that SAA, in relatively low concentrations (0.4-100 microg/ml) compared with those found in plasma in inflammatory conditions, induces a dose-dependent release of IL-8 from neutrophils. The p38 mitogen-activated protein kinase inhibitor SB 203580 inhibits the IL-8 mRNA expression and the release of protein from neutrophils. The release of IL-8 from SAA-stimulated neutrophils is strongly suppressed by the addition of N-acetyl-l-cysteine, alpha-mercaptoethanol, glutathione, and dexamethasone. SAA also induces IL-8 expression and release from monocytes. In conclusion, SAA appears to be an important mediator of the inflammatory process, possibly contributing to the pool of IL-8 produced in chronic diseases, which may play a role in degenerative diseases
RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure?
It is known that excessive inflammation at fetal-maternal interface is a key contributor in a compromised pregnancy. Female genital tract is constantly in contact with microorganisms and several strategies must be adopted to avoid pregnancy failure. Decidual endothelial cells (DECs) lining decidual microvascular vessels are the first cells that interact with pro-inflammatory stimuli released into the environment by microorganisms derived from gestational tissues or systemic circulation. Here, we show that DECs are hypo-responsive to LPS stimulation in terms of IL-6, CXCL8 and CCL2 production. Our results demonstrate that DECs express low levels of TLR4 and are characterized by a strong constitutive activation of the non-canonical NF-\u3baB pathway and a low responsiveness of the canonical pathway to LPS. In conclusion, DECs show a unique hypo-responsive phenotype to the pro-inflammatory stimulus LPS in order to control the inflammatory response at feto-maternal interface
Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8
The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBP beta, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor kappa B (NF-kappa B) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation
- …