23 research outputs found

    Asymmetric Optical Radiation Pressure Effects on Liquid Interfaces Under Intense Illumination

    Full text link
    Deformations of horizontal liquid interfaces by optical radiation pressure are generally expected to display similar behaviors whatever the direction of propagation of the exciting laser beam is. In the present experiment we find this expectation to be borne out, as long as the cw laser illumination is moderate in strength. However, as a striking contrast in the case of high field strengths, we find that either a large stable tether can be formed, or else that a break-up of the interface can occur, depending on whether the laser beam is upward or downward directed. Physically, the reason for this asymmetry can be traced to whether total reflection can occur or not. We also present two simple theoretical models, one based on geometrical optics, the other on wave optics, that are able to illustrate the essence of the effect. In the case leading to interface disruption our experimental results are compared with those obtained by Zhang and Chang for water droplets under intense laser pulses [Opt. Lett. \textbf{13}, 916 (1988)]. A key point in our experimental investigations is to work with a near-critical liquid/liquid interface. The surface tension becomes therefore significantly reduced, which thus enhances the magnitude of the stationary deformations induced.Comment: 25 pages text, plus 6 figures. Discussion expanded. Submitted to JOSA

    Liquid Transport Due to Light Scattering

    Get PDF
    Using experiments and theory, we show that light scattering by inhomogeneities in the index of refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing the liquid produces a large-scale deformation of the interface and can cause a liquid jet to form. We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good agreements between the measured deformations and those calculated assuming this mechanism.Comment: 4 pages, 5 figures, submitted to Physical Review Letters v2: Edited based on comments from referee

    Déformations, manipulations et instabilités d'interfaces liquides induites par la pression de radiation d'une onde laser

    No full text
    Ce travail est consacré à l'étude expérimentale des effets de la pression de radiation d'une onde laser continue sur une interface liquide. Les propriétés particulières du ménisque séparant deux phases liquides en coexistence au voisinage de leur point critique de démixtion nous ont permis de visualiser directement des déformations stationnaires d'interface de taille micrométrique. Au stade linéaire, i.e pour des intensités laser modérées, une loi d'échelle exprimant la hauteur des déformations a été validée, ceci pour les deux sens de propagation du faisceau relativement à l'interface. Pour des excitations laser plus élevées, une brisure de symétrie vis à vis du sens de propagation a été mise en évidence. On observe en effet la formation de doigts de grand rapport d'aspect, ou la brisure de l'interface suite à une instabilité optohydrodynamique, suivant que le faisceau se propage du milieu le moins réfringent au milieu le plus réfringent, ou inversement. Ces caractéristiques ont été exploitées pour créer et stabiliser sous champ laser des ponts liquides de rapports d'aspect bien supérieurs à la limite de l'instabilité de Rayleigh-Plateau des colonnes liquides. Les déformations thermocapillaires, engendrées par la faible élévation de température induite par le faisceau laser, ont également été caractérisées, afin de les distinguer sans ambiguité des déformations engendrées par la pression de radiation seule.We experimentally study the influence of the radiation pressure of a cw laser wave on a liquid interface. The use of near-critical phase-separated liquid mixtures allows us to observe directly micrometric stationary deformations. At the linear stage, i.e for moderate beam intensities, an universal scaling law for the height of the deformations is validated for both propagation directions of the laser beam with regard to the interface. For higher laser excitation a symmetry breaking of the interface deformations versus the direction of propagation is shown. Indeed we observe either the formation of finger (tethers) with large aspect ratio, or the break-up of the interface after an optohydrodynamical instability when the beam propagates from the highest refractive-index medium to the lowest, or inversely. Thereafter we take advantage of those facts to create and stabilize under laser field liquid bridges with aspect ratio far above the classical limit of the Rayleigh-Plateau instability. Thermocapillary deformations linked with the weak temperature rise induced by the laser beam are also analyzed in order to clearly distinguish them from the surface deformations driven by the radiation pressure

    Déformations, manipulations et instabilités d'interfaces liquides induites par la pression de radiation d'une onde laser

    No full text
    Soutenue le 24 juin 2002 Après avis de : M. D. QUERE,Directeur de Recherche au CNRS, LPMC, Collège de France et M. P. TABELING, Directeur de Recherche au CNRS, Laboratoire de Physique Statistique, ENS Paris. Devant la commission d'examen formée de : M. A. DUCASSE, Professeur à l'Université Paris XI, Président M. B. POULIGNY, Directeur de Recherche au CNRS, Rapporteur M. I. BREVIK, Professeur à l'Université de Trondheim, Examinateurs M. D. QUERE, Directeur de Recherche au CNRS M. P. TABELING, Directeur de Recherche au CNRS M. V. TIKHONCHUK, Professeur à l'Université Bordeaux I M. J-P. DELVILLE, Chargé de Recherche au CNRSWe experimentally study the influence of the radiation pressure of a cw laser wave on a liquid interface. The use of near-critical phase-separated liquid mixtures allows us to observe directly micrometric stationary deformations. At the linear stage, i.e for moderate beam intensities, an universal scaling law for the height of the deformations is validated for both propagation directions of the laser beam with regard to the interface. For higher laser excitation a symmetry breaking of the interface deformations versus the direction of propagation is shown. Indeed we observe either the formation of finger (tethers) with large aspect ratio, or the break-up of the interface after an optohydrodynamical instability when the beam propagates from the highest refractive-index medium to the lowest, or inversely. Thereafter we take advantage of those facts to create and stabilize under laser field liquid bridges with aspect ratio far above the classical limit of the Rayleigh-Plateau instability. Thermocapillary deformations linked with the weak temperature rise induced by the laser beam are also analyzed in order to clearly distinguish them from the surface deformations driven by the radiation pressure.Ce travail est consacré à l'étude expérimentale des effets de la pression de radiation d'une onde laser continue sur une interface liquide. Les propriétés particulières du ménisque séparant deux phases liquides en coexistence au voisinage de leur point critique de démixtion nous ont permis de visualiser directement des déformations stationnaires d'interface de taille micrométrique. Au stade linéaire, i.e pour des intensités laser modérées, une loi d'échelle exprimant la hauteur des déformations a été validée, ceci pour les deux sens de propagation du faisceau relativement à l'interface. Pour des excitations laser plus élevées, une brisure de symétrie vis à vis du sens de propagation a été mise en évidence. On observe en effet la formation de doigts de grand rapport d'aspect, ou la brisure de l'interface suite à une instabilité optohydrodynamique, suivant que le faisceau se propage du milieu le moins réfringent au milieu le plus réfringent, ou inversement. Ces caractéristiques ont été exploitées pour créer et stabiliser sous champ laser des ponts liquides de rapports d'aspect bien supérieurs à la limite de l'instabilité de Rayleigh-Plateau des colonnes liquides. Les déformations thermocapillaires, engendrées par la faible élévation de température induite par le faisceau laser, ont également été caractérisées, afin de les distinguer sans ambiguité des déformations engendrées par la pression de radiation seule

    Déformations, manipulations et instabilités d'interfaces liquides induites par la pression de radiation d'une onde laser

    No full text
    Ce travail est consacré à l'étude expérimentale des effets de la pression de radiation d'une onde laser continue sur une interface liquide. Les propriétés particulières du ménisque séparant deux phases liquides en coexistence au voisinage de leur point critique de démixtion nous ont permis de visualiser directement des déformations stationnaires d'interface de taille micrométrique. Au stade linéaire, i.e pour des intensités laser modérées, une loi d'échelle exprimant la hauteur des déformations a été validée, ceci pour les deux sens de propagation du faisceau relativement à l'interface. Pour des excitations laser plus élevées, une brisure de symétrie vis à vis du sens de propagation a été mise en évidence. On observe en effet la formation de doigts de grand rapport d'aspect, ou la brisure de l'interface suite à une instabilité optohydrodynamique, suivant que le faisceau se propage du milieu le moins réfringent au milieu le plus réfringent, ou inversement. Ces caractéristiques ont été exploitées pour créer et stabiliser sous champ laser des ponts liquides de rapports d'aspect bien supérieurs à la limite de l'instabilité de Rayleigh-Plateau des colonnes liquides. Les déformations thermocapillaires, engendrées par la faible élévation de température induite par le faisceau laser, ont également été caractérisées, aÞn de les distinguer sans ambiguité des déformations engendrées par la pression de radiation seule.We experimentally study the inßuence of the radiation pressure of a cw laser wave on a liquid interface. The use of near-critical phase-separated liquid mixtures allows us to observe directly micrometric stationary deformations. At the linear stage, i.e for moderate beam intensities, an universal scaling law for the height of the deformations is validated for both propagation directions of the laser beam with regard to the interface. For higher laser excitation a symmetry breaking of the interface deformations versus the direction of propagation is shown. Indeed we observe either the formation of finger (tethers) with large aspect ratio, or the break-up of the interface after an optohydrodynamical instability when the beam propagates from the highest refractive-index medium to the lowest, or inversely. Thereafter we take advantage of those facts to create and stabilize under laser field liquid bridges with aspect ratio far above the classical limit of the Rayleigh-Plateau instability. Thermocapillary deformations linked with the weak temperature rise induced by the laser beam are also analyzed in order to clearly distinguish them from the surface deformations driven by the radiation pressure

    Déformations, manipulations et instabilités d'interfaces liquides induites par la pression de radiation d'une onde laser

    No full text
    Ce travail est consacré à l'étude expérimentale des effets de la pression de radiation d'une onde laser continue sur une interface liquide. Les propriétés particulières du ménisque séparant deux phases liquides en coexistence au voisinage de leur point critique de démixtion nous ont permis de visualiser directement des déformations stationnaires d'interface de taille micrométrique. Au stade linéaire, i.e pour des intensités laser modérées, une loi d'échelle exprimant la hauteur des déformations a été validée, ceci pour les deux sens de propagation du faisceau relativement à l'interface. Pour des excitations laser plus élevées, une brisure de symétrie vis à vis du sens de propagation a été mise en évidence. On observe en effet la formation de doigts de grand rapport d'aspect, ou la brisure de l'interface suite à une instabilité optohydrodynamique, suivant que le faisceau se propage du milieu le moins réfringent au milieu le plus réfringent, ou inversement. Ces caractéristiques ont été exploitées pour créer et stabiliser sous champ laser des ponts liquides de rapports d'aspect bien supérieurs à la limite de l'instabilité de Rayleigh-Plateau des colonnes liquides. Les déformations thermocapillaires, engendrées par la faible élévation de température induite par le faisceau laser, ont également été caractérisées, afin de les distinguer sans ambiguité des déformations engendrées par la pression de radiation seule.We experimentally study the influence of the radiation pressure of a cw laser wave on a liquid interface. The use of near-critical phase-separated liquid mixtures allows us to observe directly micrometric stationary deformations. At the linear stage, i.e for moderate beam intensities, an universal scaling law for the height of the deformations is validated for both propagation directions of the laser beam with regard to the interface. For higher laser excitation a symmetry breaking of the interface deformations versus the direction of propagation is shown. Indeed we observe either the formation of finger (tethers) with large aspect ratio, or the break-up of the interface after an optohydrodynamical instability when the beam propagates from the highest refractive-index medium to the lowest, or inversely. Thereafter we take advantage of those facts to create and stabilize under laser field liquid bridges with aspect ratio far above the classical limit of the Rayleigh-Plateau instability. Thermocapillary deformations linked with the weak temperature rise induced by the laser beam are also analyzed in order to clearly distinguish them from the surface deformations driven by the radiation pressure

    Laser-induced hydrodynamic instability of fluid interfaces

    No full text
    We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset Ps of the instability

    Laser-induced hydrodynamic instability of fluid interfaces

    No full text
    We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset Ps of the instability
    corecore