192 research outputs found

    Combed 3-Manifolds with Concave Boundary, Framed Links, and Pseudo-Legendrian Links

    Full text link
    We provide combinatorial realizations, according to the usual objects/moves scheme, of the following three topological categories: (1) pairs (M,v) where M is a 3-manifold (up to diffeomorphism) and v is a (non-singular vector) field, up to homotopy; here possibly the boundary of M is non-empty and v may be tangent to the boundary, but only in a concave fashion, and homotopy should preserve tangency type; (2) framed links L in M, up to framed isotopy; (3) triples (M,v,L), with (M,v) as above and L transversal to v, up to pseudo-Legendrian isotopy (transversality-preserving simultaneous homotopy of v and isotopy of L). All realizations are based on the notion of branched standard spine, and build on results previously obtained. Links are encoded by means of diagrams on branched spines, where the diagram is smooth with respect to the branching. Several motivations for being interested in combinatorial realizations of the topological categories considered in this paper are given in the introduction. The encoding of links is suitable for the comparison of the framed and the pseudo-Legendrian categories, and some applications are given in connection with contact structures, torsion and finite-order invariants. An estension of Trace's notion of winding number of a knot diagram is introduced and discussed.Comment: 38 pages, 33 figure

    Registration of ‘Liberty’ Switchgrass

    Get PDF
    ‘Liberty’ (Reg. No. CV-271, PI 669371) switchgrass (Panicum virgatum L.) is a lowland-type cultivar that is adapted to USDA plant hardiness zones (HZ) 4, 5, and 6 in the U.S. Great Plains and Midwest, east of 100° W. longitude. It was developed for use as a perennial biomass energy crop and is the first high-yielding biomass-type lowland cultivar adapted to this region. It can produce greater biomass yields than upland- or forage-type switchgrass cultivars developed previously for use in the region, and it has equivalent winter survival. Liberty has significantly greater winter survival in its adaptation region than previously released lowland switchgrass cultivars such as ‘Kanlow’ and ‘Alamo’ that frequently have substantial winter damage and stand loss north of 40° N latitude in the U.S. Great Plains and Midwest

    Switchgrass Biomass Composition Altered by Six Generations of Divergent Breeding for Digestibility

    Get PDF
    Biomass composition of switchgrass (Panicum virgatum L.) can affect its utilization by ruminants and its conversion to liquid fuels in a biorefinery. The objective of this study was to evaluate the effects of six generations of divergent breeding for forage in vitro dry matter digestibility (IVDMD) on switchgrass biomass composition, forage quality traits, and ethanol yield. Initially there was one cycle of selection for both low (C-1) and high IVDMD (C1 = cv. Trailblazer), followed by four additional breeding cycles for high IVDMD. In cycles 4 and 5, winter survival was included as a selection criterion because of decreased winter survival of the C3 population. The experimental populations that were produced by these breeding generations and nine half-sib families from cycle 5 were evaluated for two post-establishment years at the research station in eastern Nebraska, where all the breeding work was conducted. The six breeding generations resulted in significant differences among the populations for all the 28 cell wall and non-cell-wall composition variables measured, forage quality, and ethanol yield traits measured except for total biomass C, cell wall concentration, soluble glucose, and etherified ferulates. These traits included all cell wall and nonstructural carbohydrates. Breeding for the heritable complex trait IVDMD affected a large number of plant biomass characteristics and also adversely affected plant biomass yield and winter survival

    Noncyclic covers of knot complements

    Full text link
    Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, Φ(c)\Phi (c), such that if KK is a nontrivial knot in the three-sphere with a diagram with cc crossings and a particularly simple JSJ decomposition then the complement of KK has a finite-sheeted, noncyclic cover with at most Φ(c)\Phi (c) sheets.Comment: 29 pages, 8 figures, from Ph.D. thesis at Columbia University; Acknowledgments added; Content correcte

    Temporal and Spatial Variation in Switchgrass Biomass Composition and Theoretical Ethanol Yield

    Get PDF
    Information on temporal and spatial variation in switchgrass (Panicum virgatum L.) biomass composition as it affects ethanol yield (L Mg–1) at a biorefinery and ethanol production (L ha–1) at the field-scale has previously not been available. Switchgrass biomass samples were collected from a regional, on-farm trial and biomass composition was determined using newly developed near-infrared reflectance spectroscopy (NIRS) prediction equations and theoretical ethanol yield (100% conversion efficiency) was calculated. Total hexose (cell wall polysaccharides and soluble sugars) concentration ranged from 342 to 398 g kg–1 while pentose (arabinose and xylose) concentration ranged from 216 to 245 g kg–1 across fields. Theoretical ethanol yield varied significantly by year and field, with 5 yr means ranging from 381 to 430 L Mg–1. Total theoretical ethanol production ranged from 1749 to 3691 L ha–1 across fields. Variability (coefficient of variation) within established switchgrass fields ranged from 1 to 4% for theoretical ethanol yield (L Mg–1) and 14 to 38% for theoretical ethanol production (L ha–1). Most fields showed a lack of spatial consistency across harvest years for theoretical ethanol yield or total theoretical ethanol production. Switchgrass biomass composition from farmer fields can be expected to have significant annual and field-to-field variation in a production region, and this variation will significantly affect ethanol or other liquid fuel yields per ton or hectare. Cellulosic biorefineries will need to consider this potential variation in biofuel yields when developing their business plans

    Grasses and Legumes for Cellulosic Bioenergy

    Get PDF
    Human life has depended on renewable sources of bioenergy for many thousands of years, since the time humans fi rst learned to control fi re and utilize wood as the earliest source of bioenergy. The exploitation of forage crops constituted the next major technological breakthrough in renewable bioenergy, when our ancestors began to domesticate livestock about 6000 years ago. Horses, cattle, oxen, water buffalo, and camels have long been used as sources of mechanical and chemical energy. They perform tillage for crop production, provide leverage to collect and transport construction materials, supply transportation for trade and migratory routes, and create manure that is used to cook meals and heat homes. Forage crops—many of which form the basis of Grass: The 1948 Yearbook of Agriculture (Stefferud, 1948), as well as the other chapters of this volume—have composed the principal or only diet of these draft animals since the dawn of agriculture

    Dedicated Herbaceous Biomass Feedstock Genetics and Development

    Get PDF
    Biofuels and bio-based products can be produced from a wide variety of herbaceous feedstocks. To supply enough biomass to meet the needs of a new bio-based economy, a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the USA. Researchers from the United States Department of Agriculture’s Agricultural Research Service (USDA-ARS) and collaborators associated with the USDA Regional Biomass Research Centers have made major progress in understanding the genetics of switchgrass, sorghum, and other grass species and have begun to use this knowledge to develop new cultivars with high yields and appropriate traits for efficient conversion to bio-based products. Plant geneticists and breeders have discovered genes that reduce recalcitrance for biochemical conversion to ethanol and drop-in fuels. Progress has also been made in finding genes that improve production under biotic and abiotic stress from diseases, pests, and climatic variations

    Object Affordances Tune Observers' Prior Expectations about Tool-Use Behaviors

    Get PDF
    Learning about the function and use of tools through observation requires the ability to exploit one's own knowledge derived from past experience. It also depends on the detection of low-level local cues that are rooted in the tool's perceptual properties. Best known as ‘affordances’, these cues generate biomechanical priors that constrain the number of possible motor acts that are likely to be performed on tools. The contribution of these biomechanical priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, and how, affordances interact with higher-order expectations that are generated from past experience – i.e. probabilistic exposure – to enable observational learning of tool use. To address this question we designed an action observation task in which participants were required to infer, under various conditions of visual uncertainty, the intentions of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a particular tool function and the biomechanical optimality of the observed movement were varied. We demonstrate that biomechanical priors modulate the extent to which participants' predictions are influenced by probabilistically-induced prior expectations. Biomechanical and probabilistic priors have a cumulative effect when they ‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to suboptimal behaviors)

    Attitudes to in vitro meat:A survey of potential consumers in the United States

    Get PDF
    Positivity towards meat consumption remains strong, despite evidence of negative environmental and ethical outcomes. Although awareness of these repercussions is rising, there is still public resistance to removing meat from our diets. One potential method to alleviate these effects is to produce in vitro meat: meat grown in a laboratory that does not carry the same environmental or ethical concerns. However, there is limited research examining public attitudes towards in vitro meat, thus we know little about the capacity for it be accepted by consumers. This study aimed to examine perceptions of in vitro meat and identify potential barriers that might prevent engagement. Through conducting an online survey with US participants, we identified that although most respondents were willing to try in vitro meat, only one third were definitely or probably willing to eat in vitro meat regularly or as a replacement for farmed meat. Men were more receptive to it than women, as were politically liberal respondents compared with conservative ones. Vegetarians and vegans were more likely to perceive benefits compared to farmed meat, but they were less likely to want to try it than meat eaters. The main concerns were an anticipated high price, limited taste and appeal and a concern that the product was unnatural. It is concluded that people in the USA are likely to try in vitro meat, but few believed that it would replace farmed meat in their diet
    • …
    corecore