2 research outputs found

    Performance evaluation of a point of care cartridge of the new GEM Premier ChemSTAT analyzer

    Get PDF
    Acute kidney injury; Creatinine; Point-of-careLesión renal aguda; Creatinina; Punto de atenciónLesió renal aguda; Creatinina; Punt d'atencióBackground and aims GEM Premier ChemSTAT is a new point-of-care system providing rapid creatinine, BUN and tCO2 measurements together with electrolytes, metabolites, hematocrit, pH and pCO2 from a single whole blood specimen in acute care settings such as emergency departments and intensive care units. Accurate measurements of whole blood creatinine can aid in the diagnosis and treatment of renal diseases. Materials and methods Heparinized whole blood samples from different clinical locations were evaluated on the GEM Premier ChemSTAT and results compared to plasma from the same samples on the Beckman AU5800 or whole blood on the GEM Premier 4000. Precision studies were conducted with whole blood and quality control material. Results ChemSTAT correlated well with plasma samples on the AU5800 (regression slopes (S): 0.957–1.159, correlation coefficients (r)≥0.952) and with whole blood specimens on the GEM Premier 4000 (S: 0.9646–1.124, r ≥ 0.974). The repeatability was 0.1%–3.1% and QC precision were within lab and manufacturers’ specifications. Conclusion ChemSTAT demonstrated strong correlation to the comparative methods and excellent precision. Combining with its continuous quality management, ChemSTAT is suitable for acute care settings to provide rapid, reliable results, which could minimize time-to-treatment and improve patient outcome

    Indirect determination of biochemistry reference intervals using outpatient data

    Get PDF
    Creatinine; Urea; Clinical chemistryCreatinina; Urea; Química clínicaCreatinina; Urea; Química clínicaThe aim of this study was to determine reference intervals in an outpatient population from Vall d’Hebron laboratory using an indirect approach previously described in a Dutch population (NUMBER project). We used anonymized test results from individuals visiting general practitioners and analysed during 2018. Analytical quality was assured by EQA performance, daily average monitoring and by assessing longitudinal accuracy between 2018 and 2020 (using trueness verifiers from Dutch EQA). Per test, outliers by biochemically related tests were excluded, data were transformed to a normal distribution (if necessary) and means and standard deviations were calculated, stratified by age and sex. In addition, the reference limit estimator method was also used to calculate reference intervals using the same dataset. Finally, for standardized tests reference intervals obtained were compared with the published NUMBER results. Reference intervals were calculated using data from 509,408 clinical requests. For biochemical tests following a normal distribution, similar reference intervals were found between Vall d’Hebron and the Dutch study. For creatinine and urea, reference intervals increased with age in both populations. The upper limits of Gamma-glutamyl transferase were markedly higher in the Dutch study compared to Vall d’Hebron results. Creatine kinase and uric acid reference intervals were higher in both populations compared to conventional reference intervals. Medical test results following a normal distribution showed comparable and consistent reference intervals between studies. Therefore a simple indirect method is a feasible and cost-efficient approach for calculating reference intervals. Yet, for generating standardized calculated reference intervals that are traceable to higher order materials and methods, efforts should also focus on test standardization and bias assessment using commutable trueness verifiers
    corecore