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Abstract

The aim of this study was to determine reference intervals in an outpatient population from

Vall d’Hebron laboratory using an indirect approach previously described in a Dutch popu-

lation (NUMBER project). We used anonymized test results from individuals visiting gen-

eral practitioners and analysed during 2018. Analytical quality was assured by EQA

performance, daily average monitoring and by assessing longitudinal accuracy between

2018 and 2020 (using trueness verifiers from Dutch EQA). Per test, outliers by biochemi-

cally related tests were excluded, data were transformed to a normal distribution (if neces-

sary) and means and standard deviations were calculated, stratified by age and sex. In

addition, the reference limit estimator method was also used to calculate reference inter-

vals using the same dataset. Finally, for standardized tests reference intervals obtained

were compared with the published NUMBER results. Reference intervals were calculated

using data from 509,408 clinical requests. For biochemical tests following a normal distri-

bution, similar reference intervals were found between Vall d’Hebron and the Dutch study.

For creatinine and urea, reference intervals increased with age in both populations. The

upper limits of Gamma-glutamyl transferase were markedly higher in the Dutch study

compared to Vall d’Hebron results. Creatine kinase and uric acid reference intervals were

higher in both populations compared to conventional reference intervals. Medical test

results following a normal distribution showed comparable and consistent reference inter-

vals between studies. Therefore a simple indirect method is a feasible and cost-efficient

approach for calculating reference intervals. Yet, for generating standardized calculated

reference intervals that are traceable to higher order materials and methods, efforts
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should also focus on test standardization and bias assessment using commutable true-

ness verifiers.

Introduction

Specialists in clinical chemistry should provide accurate and useful information into their clin-

ical laboratory reports. Reference intervals are commonly presented together with the actual

analytical results. Their correct evaluation is crucial due to their use as a clinical decision-mak-

ing tool [1]. Most manufacturers provide reference intervals in their technical documentation.

According to ISO15189:2012, it is the responsibility of the laboratory to either validate them,

find reference intervals from other sources or calculate the appropriate reference intervals for

their method and population. Two different approaches to calculate reference intervals could

be used: (a) The procedure recommended by the International Federation of Clinical Chemis-

try (IFCC), known as the direct method and [2,3] (b) an alternative approach, known as the

indirect method [4].

The direct approach uses a bottom-up strategy. In this sense, the reference population will

be analysed in detail in order to unravel their characteristics and then a realistic “model” will

be constructed to derive the distribution of the reference population and the reference inter-

vals. This methodology has been widely used and standardized [2], but it is laborious and

expensive. In addition, it struggles with selection bias, in combination with subjective terms as

“reference population” and “health” [5]. As an alternative approach, the indirect method uses

a top-down approach. It starts by acquiring a general overview of the total population by ana-

lysing clinical data from the laboratory information system (LIS) and, from this, filtering to

uncover the distribution of the reference population and the reference intervals. This approach

has several advantages, since ‘big’ analytical data is more accessible nowadays [4]. Automation

has increased in clinical laboratories. This has resulted in the centralization of medical tests

from a big geographical area around Vall d’Hebron into a single LIS, which guarantees a com-

mon diagnostic test process and a similar data structure for extraction [6].

As a result of differences between reference intervals provided by different manufacturers

and individual efforts to verify or select them from the literature, reference intervals vary per

laboratory potentially resulting in unequal treatment and patient harm [7]. Standardization

and harmonization efforts, which are currently successfully employed in several countries, are

necessary to improve presentation and interpretation of laboratory results [8–14]. In the Neth-

erlands, we previously determined nationally standardized reference intervals for clinical

chemistry tests using an indirect “big data” approach [14]. A simple and straightforward work-

flow using the same approach is presented in this work. First, we determined indirect reference

intervals using the NUMBER approach in a dataset of routine clinical chemistry values of the

Vall d’Hebron laboratory population in Barcelona. The clinical laboratory Vall d’Hebron is the

result of a fusion between three laboratories of the Catalan Institute of Health in Barcelona in

2014. It processes between 15,000 and 18,000 samples a day and covers a population of 1.2 mil-

lion people, resulting in a very large amount of medical test results a year. This provided us

with a unique opportunity to use only the data of a single laboratory using one single method

to establish reference intervals, which is very important given the lack of harmonization in

Spain [15]. Secondly, for those tests that are internationally standardized and produce test

results traceable to standards and/or methods of higher order, we compared the reference

intervals obtained from this study with the results published in the first NUMBER project in
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the Netherlands [14]. Finally, the reference intervals for creatinine kinase and uric acid were

investigated, since no consensus was obtained yet in the NUMBER project [14].

Material and methods

Study design

We extracted anonymized medical test results from individuals visiting general practitioners,

analysed from January 1st 2018 until and including 31st of December 2018 in the Clinical Labo-

ratory Vall d’Hebron from the LIS. The presented study was considered suitable from the

point of view of ethics and science by the corresponding Clinical Research Ethics Comittee.

We included test results from patients visiting primary care centres, employees analytical

control centres, sexual and reproduction centres and geriatric centres. Test results were

excluded when phlebotomy was performed in the hospital (inpatients), drug addiction centres,

mental health centres, external emergency centres, the prison women centre, or at home (e.g.

when primary care patients could not visit the laboratory due to illness) since we expected sub-

stantial differences in health status in these settings that can add noise to the data [4]. We per-

formed sensitivity analyses to compare the distribution between all the included centres,

showing no signs of sample or sex bias between centres (results not shown).

Pre-analytical and analytical considerations

Samples were collected from 62 blood collection centres and were transported via 8 different

routes to the laboratory. Serum tubes for biochemistry tests included separating gel and coagu-

lation activator (BD Vacutainer1). Phlebotomy order of draw was always performed as

advised by the EFLM pre-analytical workgroup [16]. The samples were transported to the lab-

oratory in cool boxes with a temperature monitoring system. After arriving in the laboratory,

the samples were centrifuged either 12 minutes at 3,500 rpm (2,438 g) when handled manually

or 10 min at 3,000 rpm (2,113 g) when on the track.

Eighteen biochemistry tests were measured on three parallel AU5800 chemistry analysers

(Beckman Coulter1). Detailed descriptions of the methods and the recommended reference

intervals (calculated by direct approaches) according to Beckman’s IFU are presented in S1

Table. Tests included: albumin (CRM470 traceable), calcium (NIST-SRM-909bL1 traceable),

creatinine (NIST-SRM-967 L1 traceable), lactate dehydrogenase (LDH) (not traceable to

higher order reference material (NTRM)), magnesium (NIST-SRM-909bL2 traceable), anor-

ganic phosphate (NTRM), total bilirubin (NIST-SRM-916a traceable), total protein

(NIST-SRM-927c traceable), uric acid (traceable to isotope dilution Mass Spectrometry), urea

(NIST-SRM-909bL1 traceable), chloride (NIST-SRM-919 traceable), potassium (NIST-SRM-

918 traceable), sodium (NIST SRM-919 traceable), alkaline phosphatase (ALP) (NTRM), ala-

nine aminotransferase (ALT) (NTRM), aspartate aminotransferase (AST) (NTRM), gamma

glutamyltransferase (GGT) (traceable to IFCC reference method) and creatine kinase (CK)

(traceable to IFCC reference method).

Analytical quality assurance

To assure the outpatient data quality, we first examined the monthly results from external

quality control scheme from the Spanish Society of Clinical Chemistry (SEQC), basic bio-

chemistry scheme. In this scheme, the results obtained in our laboratory are compared with

the average calculated from every laboratory participating in the program using the same ana-

lytical method and/or instrument. When our result was within one time the standard deviation

from other laboratories participating in the scheme using the same method, data from this
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particular month and test were accepted as valid. When our result was above or below three

standard deviations, we excluded the data from that particular test and instrument for that

month. When the result was between the second and third standard deviation, we analysed the

daily average outpatient results for the particular test and month.

Daily averages were investigated to ensure longitudinal accuracy of the results over time.

Averages were calculated per batch of 200 results a day and were compared with the average

per month and year. Plots were visually inspected in order to decide whether the analytical

quality was sufficient using the biological variation of the monthly and yearly mean as a refer-

ence and comparing it visually with the daily mean.

Finally, due to the lack of commutable trueness verifiers in 2018, we further validated the

quality of the obtained reference intervals by using a new data extraction of test results from

2020. In 2020, our laboratory participated in the fortnightly EQA scheme from the Dutch EQA

organizer Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek (SKML) which

uses commutable and value-assigned trueness verifiers [17]. In all EQA reports, the Multi sam-

ple evaluation (MUSE) scores for all tests were> = 1 (meaning a total allowable error sigma

value over 2), indicating adequate performance for all tests [18]. To verify the calculated refer-

ence intervals deduced from the 2018 data, outpatient data from July to October 2020 were

selected, considering the same analytical and pre-analytical considerations explained previ-

ously for the main data. To that end, we designed an algorithm that computed 2,000 random

samples of 200 test results each time. Next, for each random sample of 200 test results, we cal-

culated the proportion of cases residing within the reference intervals deduced from the 2018

dataset. Then we calculated the mean of these 2000 proportions for each test. When the mean

of the proportions (Prop.2020) was higher than 95 %, we considered the reference interval as

valid. This protocol was based on the CLSI EP28-A3C for reference intervals transference mod-

ifying the sample number from 20 to 200 and repeating the protocol 2,000 times [2].

Clinical criteria

To avoid pre-analytical issues that could confound the reference intervals, results from hemo-

lyzed, lipemic and icteric samples were excluded when indices were > = 2 on a 0–5 scale

(Beckman Coulter1 AU5800, S2 Table). In addition, since the icteric index could also be a

good indicator for liver dysfunction, samples with icteric indices> = 1 were also excluded for

total bilirubin, ALT, AST, ALP and GGT.

For the calculations on CK, individuals with AST results higher than decision limits in Vall

d’Hebron laboratory (50 U/L in men and 35 U/L in women) were excluded, in order to

exclude patients with skeletal muscle injury [19].

Statistical analyses

Reference intervals were calculated per test using an automatic calculator programmed in R

[20] (version 3.6.1), following the workflow presented in Fig 1.

Firstly, we used the Tukey method [21] to identify and discard outliers. The lower and

upper cut-offs for outlier exclusion were defined as Q1-(1.5xIQR) and Q3+(1.5xIQR), respec-

tively, being Q1 the lower sample quartile, Q3 the upper sample quartile and IQR the inter-

quartile range (Q3-Q1). The same workflow and outlier exclusion procedures were used as the

ones described in the NUMBER project [14], where outliers from biochemically related tests

based on defined groups were excluded. Defined groups were:

• Electrolytes: calcium, chloride, potassium, sodium

• Bone: calcium, magnesium, phosphate
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• Liver: alkaline phosphatase, GGT, ALT, AST, (total) bilirubin

• Kidney: creatinine, urea

• Proteins: albumin, total protein

For calcium, two groups of tests were considered biochemically related. The histograms

were visually inspected, and formal tests were performed (Z score for Skewness and Kurtosis)

to determine the presence of a normal Gaussian distribution. Given the large numbers of test

results, the formal tests of normality were very sensitive to a deviation from normality [22]. In

such cases, visual inspection was considered decisive. If a normal distribution was absent, we

performed a log transformation on the original data.

The reference intervals were calculated as mean plus/minus two times the standard devia-

tion (mean ± 2SD) both for the total dataset and per subgroup when a minimum of 120 test

Fig 1. Study workflow. Workflow used for calculating reference intervals in Vall d’Hebron laboratory hospital by an indirect method based on the

NUMBER study.

https://doi.org/10.1371/journal.pone.0268522.g001
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results per group were available. Also 90% confidence intervals for the lower and upper limit

were calculated. We used pre-defined subgroups analogous to the NUMBER project [14]:

• Sex: Male / Female

• Age:

• Newborns /infants: <28 days of age (WHO definition), 28 days to<1 year

• 1–5, 6–12, 13–18, 19–50, 51–65, 66–80, 80+ years

In addition, in order to test a recently published hypothesis [23] stating that certain differ-

ences between indirect studies may be due to diverse age representations into the age groups,

sensitivity analyses with additional age categories were performed for ALT and GGT.

Per test and per group boxplots were visually inspected after outlier elimination in order to

decide whether or not subgroup differentiated reference intervals were necessary. In addition,

reference intervals results were compared with the reference limit estimator method employed

by the group of Haeckel, Wosniok and Arzideh [24] using the same dataset.

Lastly, flagging rates were calculated to verify the clinical suitability of the reference inter-

vals using an independent dataset (January–June 2019). The percentages of measurements

below and above the lower and upper reference limits were calculated per test.

Results

We extracted anonymized test results from a total of 530,778 clinical requests for a period of

one year from the laboratory system of the Clinical Laboratory Vall d’Hebron University Hos-

pital. After filtering by phlebotomy centre, 3.01% clinical requests were excluded. We dis-

carded an additional 0.70% of the clinical requests because of hemolysis, 0.02% because of

icteria, and 0.35% because of lipemia. The final dataset consisted of 509,408 requests.

Analytical performance, based on monthly external quality controls was adequate for

SEQC material for all tests, except for ALP in December 2018. For this period, ALP results

were excluded from the analyses. Daily average results showed stable performance over the

year for all tests. In the S1 Fig we show an example for calcium.

Outlier exclusion by biochemically related tests ranged from 1.27 to 16.50%. Albumin, total

protein, magnesium, phosphate, calcium, sodium, potassium and chloride followed a Gaussian

distribution; for all other tests we obtained a Gaussian distribution after log transformation.

The calculated reference intervals by the indirect approach are presented in Table 1, stratified

for sex and age categories, if necessary. Results from the reference interval quality verification

protocol, tested with the new dataset from 2020 (110,237 clinical requests), are also presented

in Table 1, showing acceptable results (>95%) for all tests except for some age groups, particu-

larly for creatinine and magnesium. Confidence intervals for the lower and upper limits per

test are presented in S3 Table.

In Table 2, the obtained Vall d’Hebron reference intervals from the normally distributed

tests are compared with results from the Dutch NUMBER project [14]. The kidney and liver

parameters for both studies are graphically displayed in different age categories for men and

women in Fig 2. Similar results for GGT were found when we increased the number of age cat-

egories (S2 Fig). In addition, results from the calculated reference intervals for creatine kinase

and uric acid for the Vall d’Hebron hospital and the Dutch project are presented in Fig 3.

The obtained Vall d’Hebron reference intervals for the normally distributed tests, compared

with results from the Dutch NUMBER project, stratified for sex and age categories, if

necessary.
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Table 1. Obtained Vall d’Hebron reference intervals results using the indirect approach from the NUMBER project, stratified for sex and age categories when

necessary.

Test Unit Gender Age, years n Calculated reference intervals:

Low High Prop. 2020�

Albumin g/dL (g/L) M 1–5 330 3.8 (38) 4.9 (49) 95.6

6–18 914 4.1 (41) 5.0 (50) 92.8

19–50 4281 4.0 (40) 5.1 (51) 89.4

51–65 3660 3.8 (38) 4.9 (49) 96.2

66–80 4704 3.5 (35) 4.9 (49) 98.6

80+ 4299 3.2 (32) 4.7 (47) 99.0

F 1–5 282 3.9 (39) 4.9 (49) 93.2

6–18 1116 4.0 (40) 5.0 (50) 94.5

19–50 6622 3.7 (37) 4.9 (49) 94.0

51–65 5966 3.8 (38) 4.8 (48) 93.4

66–80 7865 3.6 (36) 4.7 (47) 93.6

80+ 10767 3.2 (32) 4.6 (46) 97.2

ALP U/L M 13–18 381 74 218 73.9

19–50 11577 46 133 89.2

51–65 9928 45 135 96.2

66–80 9520 44 137 96.2

80+ 4569 46 155 94.5

F 13–18 880 50 184 97.9

19–50 15757 39 130 96.3

51–65 14428 49 152 93.2

66–80 15285 47 147 94.5

80+ 10185 46 157 94.4

ALT U/L M 1–12 2391 9 32 97.6

13–18 2978 8 38 92.8

19–50 45779 10 55 86.3

51–65 37916 11 51 92.5

66–80 42390 9 43 95.6

80+ 21014 7 34 92.0

F 1–12 2308 9 31 97.5

13–18 4748 7 27 95.4

19–50 77714 7 35 95.7

51–65 52710 9 42 97.2

66–80 60878 8 36 97.2

80+ 4353 6 29 95.5

AST U/L M 1–5 557 25 51 99.5

6–12 921 20 42 92.6

13–18 1262 15 38 91.6

19+ 50953 13 38 96.1

F 1–5 407 26 51 99.5

6–12 1035 18 42 96.7

13–18 1980 13 30 93.8

19+ 78383 13 36 95.9

Bilirubin (total) mg/dL (μmol/L) M 6–12 123 0.23 (4) 0.84 (14) NA

13–18 301 0.29 (5) 1.34 (23) 97.3

19+ 16323 0.32 (6) 1.30 (22) 95.1

(Continued)
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Table 1. (Continued)

Test Unit Gender Age, years n Calculated reference intervals:

Low High Prop. 2020�

F 6–18 573 0.23 (4) 1.10 (19) 93.9

19+ 24215 0.28 (5) 1.04 (18) 95.5

Calcium mg/dL (mmol/L) M + F 1–5 318 9.2 (2.29) 10.7 (2.67) NA

6–12 954 9.3 (2.32) 10.5 (2.63) 97.7

13–18 1358 9.2 (2.29) 10.5 (2.61) 95.4

19+ 46602 8.8 (2.20) 10.3 (2.58) 93.6

Chloride mmol/L M + F 784 98 108 91.1

Creatinine mg/dL (μmol/L) M 6–12 1317 0.37 (33) 0.61 (54) 68.1

13–18 3517 0.47 (41) 1.07 (94) 93.0

19–50 53345 0.65 (57) 1.17 (103) 66.3

51–65 44666 0.62 (54) 1.23 (109) 78.8

66–80 48705 0.62 (55) 1.36 (121) 83.1

80+ 22032 0.63 (56) 1.53 (135) 85.5

F 6–12 1364 0.37 (33) 0.59 (53) 67.5

13–18 4804 0.45 (40) 0.83 (74) 86.6

19–50 80957 0.47 (41) 0.90 (79) 82.1

51–65 56832 0.47 (41) 0.95 (84) 85.5

66–80 67350 0.46 (41) 1.09 (96) 90.7

80+ 47750 0.48 (42) 1.37 (121) 97.8

GGT U/L M 1–5 174 7 20 NA

6–12 322 9 23 97.2

13–18 1452 8 36 95.5

19–50 31582 9 79 96.0

51–65 26758 12 95 93.9

66–80 28080 11 84 96.5

80+ 13160 8 79 99.1

F 1–5 146 8 17 NA

6–12 341 8 22 95.7

13–18 2191 7 26 97.2

19–50 48040 7 48 99.0

51–65 35997 8 71 99.7

66–80 40412 8 65 100

80+ 27174 7 66 100

LDH U/L M + F 6–12 257 359 643 NA

13–18 340 274 531 NA

19–50 2573 256 507 NA

51–65 1963 274 534 NA

66–80 2039 270 551 NA

80+ 1539 266 584 NA

Magnesium mg/dL (mmol/L) M + F 4571 1.8 (0.72) 2.4 (1.00) 89.5

Phosphate mg/dL (mmol/L) M 1–5 147 4.2 (1.34) 5.4 (1.74) NA

6–12 405 4.2 (1.33) 5.3 (1.7) 94.8

13–18 390 3.6 (1.16) 5.4 (1.72) 94.4

19–50 3132 2.4 (0.77) 4.7 (1.51) 96.8

51–65 2917 2.2 (0.72) 4.3 (1.38) 90.0

66+ 6640 2.2 (0.71) 4.2 (1.34) 92.7

(Continued)
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Results calculated using the reference limit estimator method are presented in S4 Table and

S3 Fig.

Flagging rates from an independent dataset, for both the calculated reference intervals in

this study and the currently used reference intervals in Vall d’Hebron laboratory are presented

in Fig 4.

Discussion

Application of big data to healthcare has been a matter of interest in recent years [25]. Conse-

quently, in laboratory medicine, where quantitative data is generated every day, machine

learning, data mining, business intelligence and related concepts are starting to be used for dif-

ferent purposes including analytical and quality management [25]. For the determination of

reference intervals, for which classical (direct) recommendations are laborious and expensive,

various statistical (indirect) methods have been developed using big data [4]. It is important to

remark that some specialists are concerned about the possible bias due to the presence of

unhealthy individuals in the dataset. Standard and detailed protocols following this approach

Table 1. (Continued)

Test Unit Gender Age, years n Calculated reference intervals:

Low High Prop. 2020�

F 1–5 126 4.3 (1.39) 5.4 (1.71) 96.8

6–12 428 4.1 (1.32) 5.3 (1.71) 96.3

13–18 729 3.5 (1.11) 5.2 (1.67) 94.5

19–50 5874 2.6 (0.84) 4.7 (1.51) 93.0

51–65 7970 2.7 (0.88) 4.7 (1.5) 92.8

66+ 18548 2.6 (0.84) 4.5 (1.43) 93.9

Potassium mmol/L M + F 257189 3.60 5.09 95.4

Sodium mmol/L M + F 256775 136 144 95.7

Total protein g/dL (g/L) M + F 35141 6.1 (61) 8.0 (80) 94.8

Urea mg/dL (mmol/L) M 1–5 227 15 (2.5) 45 (7.5) 93.4

6–12 755 19 (3.1) 47 (7.7) 88.7

13–18 996 18 (3.0) 47 (7.8) 85.7

19–50 4709 20 (3.3) 54 (9.0) 86.1

51–65 4457 21 (3.5) 61 (10.2) 93.9

66–80 5680 23 (3.9) 75 (12.6) 95.6

80+ 3662 27 (4.5) 93 (15.5) 94.5

F 1–5 167 16 (2.6) 43 (7.2) 91.0

6–12 767 17 (2.8) 44 (7.4) 92.9

13–18 1220 16 (2.7) 42 (7.0) 92.0

19–50 6850 16 (2.7) 46 (7.7) 93.9

51–65 5524 20 (3.4) 58 (9.7) 94.8

66–80 6986 22 (3.7) 72 (12.0) 96.4

80+ 7668 25 (4.1) 97 (16.2) 96.1

Obtained Vall d’Hebron reference intervals using the indirect approach from the NUMBER project stratified by sex and age categories when necessary.

M: Male, F: Female.
aThe reference intervals obtained from the dataset in 2018 were validated using a new dataset in 2020 when the laboratory participated in a type 1 EQA scheme.

Proportion (Prop.) 2020 indicates the proportion of data from 2020 inside the calculated reference intervals. When the mean of the proportions was higher than 95%, we

considered the calculated reference intervals verified.

https://doi.org/10.1371/journal.pone.0268522.t001
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are not available yet. However, the IFCC committee on Reference Intervals and Decision Lim-

its (c-RIDL) recently recommended and promoted the development and assessment of indi-

rect methods, stimulating future consensus for a harmonized indirect approach [26].

In the present study, we calculated reference intervals in an outpatient population from

Vall d’Hebron laboratory using the NUMBER approach created for calculating nationally stan-

dardized reference intervals for clinical chemistry tests in The Netherlands [14]. The normally

distributed tests (Table 2) showed similar reference intervals between both studies and other

previous projects such as the Canadian project CALIPER (direct method) [27], the Australian

and New Zeeland project ARIA (direct method) [8], or the German projects (indirect meth-

ods) [23,24]. This suggests that standardized tests allow global and common use of reference

intervals and a straightforward indirect method could be a valuable approach for these nor-

mally distributed tests. The comparison of the results from this study with the reference limit

estimator method (S4 Table and S3 Fig) support this idea as nearly equal reference interval cal-

culations were obtained with both methods for tests with a normal distribution.

In this project, the upper reference limits for liver enzymes from the Dutch project were

always substantially higher than the upper reference limits from Vall d’Hebron laboratory. We

previously already hypothesized about potential explanations for the higher upper limits in the

Table 2. Reference intervals results from normally distributed tests.

Test Unit Gender Age, years Vall d’hebron RI: NUMBER RI:

Low High Low High

Albumin g/dL (g/L) M 6–18 4.2 (42) 5.1 (51) 4.0 (40) 5.2 (52)

19–50 4.0 (40) 5.1 (51) 3.9 (39) 5.1 (51)

51–65 3.8 (38) 4.9 (49) 3.7 (37) 4.9 (49)

66–80 3.5 (35) 4.9 (49) 3.6 (36) 4.8 (48)

80+ 3.2 (32) 4.7 (47) 3.6 (36) 4.6 (46)

F 1–5 4.0 (40) 5.0 (50) 3.9 (39) 5.0 (50)

6–18 4.0 (40) 5.1 (51) 4.0 (40) 5.1 (51)

19–50 3.7 (37) 4.9 (49) 3.8 (38) 4.9 (49)

51–65 3.8 (38) 4.8 (48) 3.8 (38) 4.9 (49)

66–80 3.6 (36) 4.7 (47) 3.7 (37) 4.8 (48)

80+ 3.2 (32) 4.6 (46) 3.6 (36) 4.7 (47)

Calcium mg/dL (mmol/L) M + F 6–12 9.3 (2.32) 10.5 (2.63) 9.2 (2.29) 10.3 (2.56)

13–18 9.2 (2.29) 10.5 (2.61) 8.9 (2.23) 10.3 (2.57)

19+ 8.8 (2.20) 10.3 (2.58) 8.7 (2.18) 10.2 (2.55)

Chloride mmol/L M + F 98 108 97 108

Phosphate mg/dL (mmol/L) M 13–18 3.6 (1.16) 5.4 (1.72) 2.9 (0.88) 4.8 (1.53)

19–50 2.4 (0.77) 4.7 (1.51) 1.9 (0.62) 4.1 (1.32)

51–65 2.3 (0.72) 4.3 (1.38) 1.9 (0.62) 4.1 (1.32)

66+ 2.2 (0.71) 4.2 (1.34) 1.9 (0.62) 4.1 (1.32)

F 13–18 3.5 (1.11) 5.2 (1.67) 2.6 (0.82) 4.8 (1.52)

19–50 2.6 (0.84) 4.7 (1.51) 2.3 (0.73) 4.5 (1.44)

51–65 2.8 (0.88) 4.7 (1.50) 2.3 (0.73) 4.5 (1.44)

66+ 2.6 (0.84) 4.5 (1.43) 2.3 (0.73) 4.5 (1.44)

Potassium mmol/L M + F 3.6 5.1 3.8 5.2

Magnesium mg/dL (mmol/L) M + F 1.75 (0.72) 2.43 (1.00) 1.73 (0.71) 2.38 (0.98)

Sodium mmol/L M + F 136 144 136 145

Total protein g/dL (g/L) M + F 6.1 (61) 8.0 (80) 6.1 (61) 7.9 (79)

https://doi.org/10.1371/journal.pone.0268522.t002
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Fig 2. Urea, creatinine and GGT results. Age and sex effects on the reference intervals for creatinine, urea and GGT

for Vall d’Hebron (v) and NUMBER (n).

https://doi.org/10.1371/journal.pone.0268522.g002
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Netherlands [14], as a result of the Dutch lifestyle and diet. The only IFCC-standardized

method for liver parameters in our study was GGT and the differences for this test between

Vall d’Hebron results in Barcelona and the NUMBER project could support this hypothesis.

Alcohol consumption and increased body mass index have been related with higher ALT,

GGT and AST results in the population from the Nordic Reference Interval Project (NORIP)

[28]. Interestingly, in 2009, Strømme and colleagues, using data from the NORIP project,

showed reference intervals results for ALT in northern Europe which are similar to our Dutch

Fig 3. Creatine kinase and uric acid results. Reference intervals for creatine kinase and uric acid for Vall d’Hebron (v) and NUMBER (n), stratified for

age and sex. Currently used upper reference interval in Vall d’Hebron are shown as slashed lines.

https://doi.org/10.1371/journal.pone.0268522.g003
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results [29]. They already highlighted the differences observed between the Nordic reference

intervals and the reference intervals calculated for the Italian population, which in their turn

are similar to the calculated reference intervals in our study for the population in Vall

d’Hebron [29,30]. In a recent publication, Wosniok et al. addressed these differences in calcu-

lated reference intervals from different studies for liver parameters [23]. They proposed it may

be due to diverse age representations in the age groups. In order to test this hypothesis, we

repeated the analyses for GGT, applying more age categories, in both the Vall d’Hebron and

NUMBER datasets (S2 Fig). Since these results showed the same tendency, we consider differ-

ences in lifestyle a potential alternative hypothesis. In addition, the reference intervals for GGT

are only significantly higher in the adult Dutch population (when diet or alcohol do start to

play a role) and not in children, indicating a lifestyle component. The Mediterranean diet has

been associated with favourable health outcomes [31], and with decreasing levels of ALT, AST

and GGT in patients with non-alcoholic fatty liver disease, supporting this hypothesis [32]. It

is important to remark that the reference intervals for the liver parameters that were calculated

using the reference limit estimator method (S4 Table and S3 Fig) were not as high in the Vall

d’Hebron population as with NUMBER method, but were still higher than the reference inter-

vals that are now commonly applied in clinical laboratories. This supports the idea that, for

skewed distributions, it is still necessary to further explore the best indirect method for refer-

ences interval calculation.

Fig 4. Flagging rates. Percentage of individuals upper or lower (represented as negative) the reference intervals, for an independent dataset (January-

June 2019) for both calculated reference intervals and currently used reference intervals in Vall d’Hebron (�).

https://doi.org/10.1371/journal.pone.0268522.g004
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For creatinine and urea, similar age distributions were found in the Vall d’Hebron outpa-

tient sample compared to the Dutch national sample, even though the methodology for creati-

nine differed (Jaffe vs enzymatic, Fig 2), which support earlier studies on the age related

decline in renal function [33].

Interestingly, for reasons yet unclear, in age group 19–50 years, for albumin, ALP, ALT, cre-

atinine and urea, the resulting reference interval is usually smaller in male patients and the

Prop. 2020 is always lower (<90%) when comparing to the results in female patients. No expla-

nation was found for the significantly elevated reference intervals for CK and uric acid in the

NUMBER project [14], as the calculated reference intervals were substantially higher than

those currently applied in the participating laboratories. In the Vall d’Hebron sample, we con-

firmed the Dutch observations and also found reference intervals higher than currently used

and recommended for these tests. Nevertheless, compared with the Duch results, the upper

limits of the reference intervals calculated in Vall d’Hebron laboratory were lower for all age

groups for both CK and uric acid (Fig 3). For CK, differences between currently used and cal-

culated reference intervals are particularly extreme, which has been already observed in other

studies [34,35]. This finding might be explained by the high incidence of some related comor-

bidities such as metabolic syndrome or high blood pressure [36] together with the use of stat-

ins. For uric acid, the obtained higher limits in both studies are also higher than cut-off values

associated with worse progression of kidney disease [37] and higher than the cut-off defined

by the solubility limit of uric acid [14].

Our analyses show important differences in flagging rates between the currently used refer-

ence intervals in Vall d’Hebron and the new calculated reference intervals in an independent

dataset. In general terms, too much flagging is noted for currently used reference intervals.

This highlights the need for establishing adequate reference intervals, as frequent flagging may

distract attention from true pathological results [38]. In addition to that, we found, in general,

higher flagging in our study compared to the Dutch NUMBER study which may be explained

by the additional pre-analytical and clinical criteria used in the current study.

For some of the calculated reference intervals the confidence intervals for lower and upper

limits (S3 Table) included only the reported limit, due to the large sample size, emphasizing

the robustness of the presented results.

It is also important to remark that, in general, the results calculated with the NUMBER

method and the Reference Limit Estimator method (S4 Table and S3 Fig) show in a great

extent similar results across age group, but for a few laboratory tests there are some remarkable

differences that deserve further study. Lower reference intervals were found with the Reference

Limit Estimator method for GGT, creatinine and CK.

Our study has several strengths. First, compared to the direct method of establishing refer-

ence intervals, the applied automatic indirect approach is cost-efficient and avoids collecting

and analysing material from healthy control donors. Second, it mimics preanalytical condi-

tions of real samples. In addition, we had the unique opportunity to experiment with the

Dutch NUMBER approach and to do head-to-head comparisons between the reference inter-

vals obtained for the Dutch population with the reference intervals calculated in the Vall

d’Hebron population for standardized tests. Lastly, results using the NUMBER method were

also compared with the reference limit estimator method [24] using the same dataset.

We also acknowledge several limitations. First, since we used anonymous laboratory test

results, clinical information was not available. Although we tried to select a healthy population

as much as possible, test results from unhealthy persons may have been included in our data-

sets. Second, because of our completely anonymized databases, we did not exclude individuals

visiting practitioners more than once a year leading to a possible bias. Third, structural moni-

toring with commutable, value-assigned trueness verifiers (type 1 EQA-materials) was not
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available in 2018. However, blinded type 1 EQA materials from the Dutch SKML were used in

2020, which is essential for proving metrological traceability of results from standardized test.

By using a random sampling method with a dataset from 2020 we confirmed adequate analyti-

cal performance and verified the reference intervals calculated in the 2018 dataset. The

COVID-19 pandemic and the resulting differences in patient population hampered us in using

a dataset from 2020 to calculate the reference intervals. Fourth, we selected one statistical

method (NUMBER method) to calculate reference intervals, and compared these with the ref-

erence limit estimator method [24]. Several statistical methods have been proposed so far but

no consensus or official recommendations about ‘which method to use when’ are available yet

[4]. We recommend that, on an international level, indirect (statistical) reference interval

methods are compared, in order to reach consensus on criteria to decide which statistical

method should be applied for which test. Given the comparable results between studies apply-

ing indirect methods to establish reference intervals, indirect methods are a promising tool for

laboratories to develop cheap, specific and updated reference intervals.

In conclusion, using an indirect approach, we determined population-specific reference

intervals for 16 biochemistry tests from the Vall d’Hebron region, some being more sex and

age specific than in the product inserts. Reference intervals of normally distributed biochemi-

cal tests were comparable to those found in a Dutch outpatient sample, indicating that the

indirect method is an appropriate approach for deducing reference intervals. In order to verify

the applicability of SI-traceable reference intervals obtained by indirect methods across outpa-

tient populations, equivalence of test results from SI-standardizable tests must be verified thor-

oughly using type 1 EQA-materials. To conclude, adequate implementation of common,

metrologically traceable reference intervals is the ultimate goal for guaranteeing safe and clini-

cally effective use of medical tests, as required by the upcoming EU IVD Regulation 2017/746.

As a first step, method (Beckman)- and population (Vall d’Hebron region)- specific refined

reference intervals were derived for biochemistry tests.
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S1 Fig. Daily averages plot for calcium. Daily average is represented as points, monthly aver-
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person variation. Decisions about quality stability were made by visual inspection of the plots.

(PDF)

S2 Fig. GGT reference interval results by age. Different age representation for the calculated

reference intervals for ALT and GGT for Vall d’Hebron (V) and NUMBER (N).
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S3 Fig. Comparison between indirect reference intervals using two methods. NUMBER

method and reference limit estimator (RLE) method. Representation of reference intervals

from S4 Table were made just when the number of data per both methods were higher than

500. �Reference interval results calculated with less data than the recommended by the RLE

method (4.000).
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S3 Table. Calculated reference intervals using NUMBER method presented together with

the 90% confidence interval.
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