149 research outputs found

    Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface

    Get PDF
    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations.Mary Wood is grateful for funding from the Oppenheimer Trust. The PNR data were collected using the V6 instrument at the Helmholtz-Zentrum Berlin (experiment number MAT-04-2131).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0443

    Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    Get PDF
    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations.Mary Wood is grateful for funding from the Oppenheimer Trust. The PNR data were collected using the V6 instrument at the Helmholtz-Zentrum Berlin (experiment number MAT-04-2131).This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0443

    Delivery of Native Proteins into C. elegans Using a Transduction Protocol Based on Lipid Vesicles.

    Get PDF
    The nematode worm Caenorhabditis elegans (C. elegans) is a versatile and widely used animal model for in vivo studies of a broad range of human diseases, in particular for understanding their genetic origins and for screening drug candidates. Nevertheless, the challenges associated with the administration of native proteins to C. elegans have limited the range of applications of this animal model in protein-based drug discovery programs. Here, we describe a readily usable protocol for the transduction of native proteins in C. elegans, which is based on the encapsulation of the proteins of interest within cationic lipid vesicles, prior to their administration to worms. This procedure limits the degradation of the proteins in the guts of the animals, and promotes their adsorption into body tissues. To illustrate the efficacy of this approach we apply it to deliver an antibody designed to inhibit α-synuclein aggregation, and show that it can lead to the rescue of the disease phenotype in a C. elegans model of Parkinson's disease. As this transduction protocol is fast and inexpensive, we anticipate that it will be readily applicable to protein-based drug discovery studies that utilize C. elegans as a model organism.Alzheimer’s Society, UK (grant number 317, AS-SF-16-003) Centre For Misfolding Disease

    Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response.

    Get PDF
    Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (AÎČ) and rescue a C. elegans model of Alzheimer's disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders
    • 

    corecore