1,215 research outputs found

    Lock and Hold Structured Light Illumination

    Get PDF
    A method, system, and associated program code, for 3-dimensional image acquisition, using structured light illumination, of a surface-of-interest under observation by at least one camera. One aspect includes: illuminating the surface-of-interest, while static/at rest, with structured light to obtain initial depth map data therefor; while projecting a hold pattern comprised of a plurality of snake-stripes at the static surface-of-interest, assigning an identity to and an initial lock position of each of the snake-stripes of the hold pattern; and while projecting the hold pattern, tracking, from frame-to-frame each of the snake-stripes. Another aspect includes: projecting a hold pattern comprised of a plurality of snake-stripes; as the surface-of-interest moves into a region under observation by at least one camera that also comprises the projected hold pattern, assigning an identity to and an initial lock position of each snake-stripe as it sequentially illuminates the surface-of-interest; and while projecting the hold pattern, tracking, from frame-to-frame, each snake-stripe while it passes through the region. Yet another aspect includes: projecting, in sequence at the surface-of-interest positioned within a region under observation by at least one camera, a plurality of snake-stripes of a hold pattern by opening/moving a shutter cover; as each of the snake-stripes sequentially illuminates the surface-of-interest, assigning an identity to and an initial lock position of that snake-stripe; and while projecting the hold pattern, tracking, from frame-to-frame, each of the snake-stripes once it has illuminated the surface-of-interest and entered the region

    Spirality: A Novel Way to Measure Spiral Arm Pitch Angle

    Full text link
    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code's results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality's error bars overlapped 2DFFT's error bars for 26 of the 30 galaxies. The two methods' agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies' spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. The Spirality code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined. The code package is freely available online; see Comments for URL.Comment: 19 pages, 9 figures, 3 tables. The code package is available at http://dafix.uark.edu/~doug/SpiralityCode

    Measurement of the Noise Resulting from the Interaction of Turbulence with a Lifting Surface

    Get PDF
    An experimental study of the noise resulting from the interaction of an airfoil with incident turbulence is presented. The test models include NACA0015 airfoils of different chord lengths, a flat plate with a sharp leading edge, and an airfoil of same section as a reference Fowler flap. The airfoils are immersed in nearly isotropic turbulence. Two approaches for performing the noise measurements are used and compared. The effects that turbulence intensity and scales, airfoil geometry, velocity and angle of attack have on the incident turbulence interaction noise are examined. Detailed directivity measurements are presented. It is found that noise spectral levels beyond the peak frequency decrease more with decreasing airfoil leading edge sharpness, and that spectral peak level (at 0 deg. angle of attack) appears to be mostly controlled by the airfoil fs thickness and chord. Increase in turbulence scale and intensity are observed to lead to a uniform increase of the noise spectral levels with an LI(sup 2) dependence (where L is the turbulence longitudinal integral scale and I is the turbulence intensity). Noise levels are found to scale with the 6th power of velocity and the 2nd power of the airfoil chord. Sensitivity to changes in angle of attack appears to have a turbulence longitudinal integral scale to chord (C) ratio dependence, with large effects on noise for L/C greater than or equal to 1 and decreased effects as L/C becomes smaller than 1. For all L/C values, the directivity pattern of the noise resulting from the incident turbulence is seen to remain symmetric with respect to the direction of the mean flow until stall, at which point, the directivity becomes symmetric with respect to the airfoil chord. It is also observed that sensitivity to angle of attack changes is more pronounced on the model suction side than on the model pressure side, and in the higher frequency range of the spectra for the largest airfoils tested (L/C less than 0.24)

    Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center

    Get PDF
    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior

    Constitutive Soil Properties for Cuddeback Lake, California and Carson Sink, Nevada

    Get PDF
    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material modeling properties for four soil models from two dry lakebeds in the western United States. The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples from the lakebeds. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific only to the two lakebeds discussed in the report. The Cuddeback A and B models represent the softest and hardest soils at Cuddeback Lake. The Carson Sink Wet and Dry models represent different seasonal conditions. It is possible to approximate other clay soils with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior

    Landing Gear Components Noise Study - PIV and Hot-Wire Measurements

    Get PDF
    PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations

    Chemical tagging can work: Identification of stellar phase-space structures purely by chemical-abundance similarity

    Get PDF
    Chemical tagging promises to use detailed abundance measurements to identify spatially separated stars that were in fact born together (in the same molecular cloud), long ago. This idea has not yielded much practical success, presumably because of the noise and incompleteness in chemical-abundance measurements. We have succeeded in substantially improving spectroscopic measurements with The Cannon, which has now delivered 15 individual abundances for ~100,000 stars observed as part of the APOGEE spectroscopic survey, with precisions around 0.04 dex. We test the chemical-tagging hypothesis by looking at clusters in abundance space and confirming that they are clustered in phase space. We identify (by the k-means algorithm) overdensities of stars in the 15-dimensional chemical-abundance space delivered by The Cannon, and plot the associated stars in phase space. We use only abundance-space information (no positional information) to identify stellar groups. We find that clusters in abundance space are indeed clusters in phase space. We recover some known phase-space clusters and find other interesting structures. This is the first-ever project to identify phase-space structures at survey-scale by blind search purely in abundance space; it verifies the precision of the abundance measurements delivered by The Cannon; the prospects for future data sets appear very good.Comment: accepted for publication in the Ap
    corecore