18 research outputs found

    Action of Curcumin on Glioblastoma Growth: A Systematic Review with Meta-Analysis of Animal Model Studies

    Get PDF
    Gliomas are aggressive brain tumors with poor prognosis even after surgical removal and radio-chemotherapy, stressing the urgency to find alternative therapies. Several preclinical studies evaluating the anticancer effect of curcumin in animal models of glioma are reported, but a systematic review with meta-analysis of these studies, considering the different experimental conditions used, has not been made up to this date. A search in different databases (Pubmed, Web of Science, Scopus, and SciELO) following the PRISMA statement was conducted during November 2023 to systematically identify articles assessing the effect of curcumin in murine xenograft models of glioma and identified 15 articles, which were subdivided into 24 studies. Tumor volume before and after treatment with curcumin or vehicle was extracted and the efficacy of curcumin was evaluated by performing a random effects meta-analysis of the data. Publication bias and the impact of different experimental conditions on curcumin efficacy were assessed. Treatment with curcumin decreased tumor volume. Comparing curcumin with control groups, the overall weighted standardized difference in means was −2.079 (95% CI: −2.816 to −1.341; p-value < 0.001). The curcumin effect was observed for different animal models, types of glioma cells, administration routes, and curcumin formulations. Publication bias was identified but does not invalidate curcumin’s effectiveness. The findings suggest the potential therapeutic efficacy of curcumin against glioma.Foundation for Science and Technology (FCT); CENTRO 2020 and LISBOA 2020 (POCI-01-0145-FEDER-016822)info:eu-repo/semantics/publishedVersio

    The role of cGMP on adenosine A1 receptor-mediated inhibition of synaptic transmission at the hippocampus

    Get PDF
    Copyright © 2016 Pinto, Serpa, Sebastião and Cascalheira. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway.AS received a scholarship from FCT (SFRH/BD/65112/2009).info:eu-repo/semantics/publishedVersio

    The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies

    Get PDF
    Glioblastoma multiforme (GBM) is the most frequent and aggressive malignant brain tumour, with a poor prognosis despite available surgical and radio-chemotherapy, rising the necessity for searching alternative therapies. Several preclinical studies evaluating the efficacy of cannabinoids in animal models of GBM have been described, but the diversity of experimental conditions and of outcomes hindered definitive conclusions about cannabinoids efficacy. A search in different databases (Pubmed, Web of Science, Scopus and SciELO) was conducted during June 2019 to systematically identify publications evaluating the effects of cannabinoids in murine xenografts models of GBM. The tumour volume and number of animals were extracted, and a random effects meta-analysis of these results was performed to estimate the efficacy of cannabinoids. The impact of different experimental factors and publication bias on the efficacy of cannabinoids was also assessed. Nine publications, which satisfied the inclusion criteria, were identified and subdivided in 22 studies involving 301 animals. Overall, cannabinoid therapy reduced the fold of increase in tumour volume in animal models of GBM, when compared with untreated controls. The overall weighted standardized difference in means (WSDM) for the effect of cannabinoids was -1.399 (95% CI: -1.900 to -0.898; P-value<0.0001). Furthermore, treatment efficacy was observed for different types of cannabinoids, alone or in combination, and for different treatment durations. Cannabinoid therapy was still effective after correcting for publication bias. The results indicate that cannabinoids reduce the tumour growth in animal models of GBM, even after accounting for publication bias.Operação Centro-01-0145-FEDER-000019-C4-Centro de Competências em Cloud Computinginfo:eu-repo/semantics/publishedVersio

    The sex bias of cancer

    Get PDF
    In cancers of hormone-dependent organs like women breast and reproductive organs, endometrium and ovaries, and men’s prostate and testicular cancer, the roles of sex hormones and deregulation of hormone axes are well-documented. More strikingly, epidemiological data highlights significant differences between sexes in the incidence of various cancers in non-reproductive organs, where the role of sex hormones has been less studied. In an era when personalised medicine is gaining recognition, understanding molecular, cellular and biological differences between men and women is timely for developing more appropriate therapeutic interventions according to gender. In this review we show that sex hormones also shape much of the deregulated cellular and molecular pathways leading to cell proliferation and cancer in nonreproductive organs.info:eu-repo/semantics/acceptedVersio

    Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation

    Get PDF
    Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the MTT assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase (LDH) release and by western blot analysis of αII-Spectrin cleavage. 30µM-Adenosine caused a 40%±3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100µM-Homocysteine alone caused 16%±3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76%±4%, an effect higher (p < .05) than the sum of the effect of adenosine and homocysteine alone (56%±5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100µM) or SAM (50-100µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.info:eu-repo/semantics/acceptedVersio

    Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review

    Get PDF
    orensic toxicology plays a pivotal role in elucidating the presence of drugs of abuse in both biological and solid samples, thereby aiding criminal investigations and public health initiatives. This review article explores the significance of sensor technologies in this field, focusing on diverse applications and their impact on the determination of drug abuse markers. This manuscript intends to review the transformative role of portable sensor technologies in detecting drugs of abuse in various samples. They offer precise, efficient, and real-time detection capabilities in both biological samples and solid substances. These sensors have become indispensable tools, with particular applications in various scenarios, including traffic stops, crime scenes, and workplace drug testing. The integration of portable sensor technologies in forensic toxicology is a remarkable advancement in the field. It has not only improved the speed and accuracy of drug abuse detection but has also extended the reach of forensic toxicology, making it more accessible and versatile. These advancements continue to shape forensic toxicology, ensuring swift, precise, and reliable results in criminal investigations and public health endeavours.info:eu-repo/semantics/publishedVersio

    Therapeutic Potential of Resveratrol for Glioma: A Systematic Review and Meta-Analysis of Animal Model Studies

    No full text
    Gliomas are aggressive malignant brain tumors, with poor prognosis despite available therapies, raising the necessity for finding new compounds with therapeutic action. Numerous preclinical investigations evaluating resveratrol’s anti-tumor impact in animal models of glioma have been reported; however, the variety of experimental circumstances and results have prevented conclusive findings about resveratrol’s effectiveness. Several databases were searched during May 2023, ten publications were identified, satisfying the inclusion criteria, that assess the effects of resveratrol in murine glioma-bearing xenografts. To determine the efficacy of resveratrol, tumor volume and animal counts were retrieved, and the data were then subjected to a random effects meta-analysis. The influence of different experimental conditions and publication bias on resveratrol efficacy were evaluated. Comparing treated to untreated groups, resveratrol administration decreased the tumor volume. Overall, the effect’s weighted standardized difference in means was −2.046 (95%CI: −3.156 to −0.936; p-value < 0.001). The efficacy of the treatment was observed for animals inoculated with both human glioblastoma or rat glioma cells and for different modes of resveratrol administration. The combined administration of resveratrol and temozolomide was more effective than temozolomide alone. Reducing publication bias did not change the effectiveness of resveratrol treatment. The findings suggest that resveratrol slows the development of tumors in animal glioma models.info:eu-repo/semantics/publishedVersio

    GABAergic role in the disruption of wild cleaner fish behaviour under high CO2

    Get PDF
    Funding Information: We acknowledge CRIOBE research station staff for the help provided throughout this study. We also acknowledge Frederik Zuberer for providing the cleaner fish photo. Portuguese national funds funded this study through FCT – Fundação para a Ciência e Tecnologia , I.P., within the projects PTDC/BIA-BMA/0080/2021 (ChangingMoods), PTDC/MAR-EST/5880/2014 (MUTUALCHANGE), the strategic project UID/MAR/04292/2020 (MARE), LA/P/0069/2020 (ARNET) and a PhD scholarship ( SFRH/BD/111153/2015 ). The Company of Biologists supported this study through a research grant to J.R.P. ( JEB 170212–2017 ). J.R.P. was supported by FCT through the CEEC program 2021.01030.CEECIND. Publisher Copyright: © 2022 The Author(s)Ocean acidification is considered to affect fish behaviour through the disruption of GABAergic neurotransmission in controlled laboratory conditions, but less is known of the GABAergic role on fish behavioural performance in the wild. Most coral reef fishes engage in complex cleaning interactions, where they benefit from ectoparasite removal and stress relief. Here, we tested whether potential ocean acidification impairment of wild cleaning interactions, between the cleaner fish Labroides dimidiatus and its clients, can be explained by the GABAAR model. We used, the GABAA receptor agonist (muscimol) and antagonist (gabazine) for the first time in the wild and tested their effects on cleaning behaviour in Moorea Island (French Polynesia) to address natural interactions and recovery capacity. After exposure to expected ocean acidification conditions, the proportion of time spent advertising cleaning services, a measure of motivation to interact, dropped significantly relative to controls. Furthermore, the GABAergic antagonist gabazine recovered most CO2-induced behavioural alterations to control levels, consistent with the GABAAR model of altered Cl− flux in ocean acidification-exposed fish. However, muscimol treatment only produced the same behavioural alterations found with CO2 exposure in time spent advertising cleaning. Our results support the evidence that ocean acidification alters some components of cleaning behaviour through GABAA receptor modulation with potential cascading effects on coral reef health and structure.publishe

    Action of Curcumin on Glioblastoma Growth: A Systematic Review with Meta-Analysis of Animal Model Studies

    No full text
    Gliomas are aggressive brain tumors with poor prognosis even after surgical removal and radio-chemotherapy, stressing the urgency to find alternative therapies. Several preclinical studies evaluating the anticancer effect of curcumin in animal models of glioma are reported, but a systematic review with meta-analysis of these studies, considering the different experimental conditions used, has not been made up to this date. A search in different databases (Pubmed, Web of Science, Scopus, and SciELO) following the PRISMA statement was conducted during November 2023 to systematically identify articles assessing the effect of curcumin in murine xenograft models of glioma and identified 15 articles, which were subdivided into 24 studies. Tumor volume before and after treatment with curcumin or vehicle was extracted and the efficacy of curcumin was evaluated by performing a random effects meta-analysis of the data. Publication bias and the impact of different experimental conditions on curcumin efficacy were assessed. Treatment with curcumin decreased tumor volume. Comparing curcumin with control groups, the overall weighted standardized difference in means was −2.079 (95% CI: −2.816 to −1.341; p-value < 0.001). The curcumin effect was observed for different animal models, types of glioma cells, administration routes, and curcumin formulations. Publication bias was identified but does not invalidate curcumin’s effectiveness. The findings suggest the potential therapeutic efficacy of curcumin against glioma

    The role of ayahuasca in cell viability and oxidative stress in gastric adenocarcinoma cell line

    No full text
    Ayahuasca, a psychoactive beverage native to the Amazon, originally derived from Banisteriopsis caapi stem scrapings and Psychotria viridis leaves, exhibits hallucinogenic properties due to N,Ndimethyltryptamine. When combined with β-carbolines, it enters the bloodstream and central nervous system, inhibiting monoamine oxidase-A. Over time, therapeutic effects have been associated to ayahuasca consumption. This study assessed the impact of extracts from three plant decoctions used in ayahuasca preparation on the gastric adenocarcinoma cell line (AGS). MTT reduction assays selected B. caapi, Mimosa hostilis, and Peganum harmala samples as most effective. Lactate dehydrogenase activity evaluated membrane integrity loss, while oxidative stress induction was measured using dihydroethidium and 2′,7′-dichlorodihydrofluorescein diacetate probes. Results revealed apoptosis induction in AGS Ucells, with all three samples significantly reducing oxidative stress.info:eu-repo/semantics/publishedVersio
    corecore