65 research outputs found
Implementation of a Commercial Deep Learning-Based Auto Segmentation Software in Radiotherapy: Evaluation of Effectiveness and Impact on Workflow
Proper delineation of both target volumes and organs at risk is a crucial step in the radiation therapy workflow. This process is normally carried out manually by medical doctors, hence demanding timewise. To improve efficiency, auto-contouring methods have been proposed. We assessed a specific commercial software to investigate its impact on the radiotherapy workflow on four specific disease sites: head and neck, prostate, breast, and rectum. For the present study, we used a commercial deep learning-based auto-segmentation software, namely Limbus Contour (LC), Version 1.5.0 (Limbus AI Inc., Regina, SK, Canada). The software uses deep convolutional neural network models based on a U-net architecture, specific for each structure. Manual and automatic segmentation were compared on disease-specific organs at risk. Contouring time, geometrical performance (volume variation, Dice Similarity Coefficient-DSC, and center of mass shift), and dosimetric impact (DVH differences) were evaluated. With respect to time savings, the maximum advantage was seen in the setting of head and neck cancer with a 65%-time reduction. The average DSC was 0.72. The best agreement was found for lungs. Good results were highlighted for bladder, heart, and femoral heads. The most relevant dosimetric difference was in the rectal cancer case, where the mean volume covered by the 45 Gy isodose was 10.4 cm(3) for manual contouring and 289.4 cm(3) for automatic segmentation. Automatic contouring was able to significantly reduce the time required in the procedure, simplifying the workflow, and reducing interobserver variability. Its implementation was able to improve the radiation therapy workflow in our department
Investigating the platinum electrode surface during Kolbe electrolysis of acetic acid
Platinum is commonly applied as the anode material for Kolbe electrolysis of carboxylic acids thanks to its superior performance. Literature claims that the formation of a barrier layer on the Pt anode in carboxylic acid electrolyte suppresses the competing oxygen evolution and promotes anodic decarboxylation. In this work, we show by using a combination of complementary in situ and ex situ surface sensitive techniques, that the presence of acetate ions also prevents the formation of a passive oxide layer on the platinum surface at high anodic potentials even in aqueous electrolyte. Furthermore, Pt dissolves actively under these conditions, challenging the technical implementation of Kolbe electrolysis. Future studies exploring the activity-structure-stability relation of Pt are required to increase the economic viability of Kolbe electrolysis
Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system
Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a micro- Diamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions
Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton’s rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose uncertainty of the film orientation and film homogeneity
- …