5,631 research outputs found

    The Off-forward Quark-Quark Correlation Function

    Get PDF
    The properties of the non-forward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.Comment: Accepted for publication in Physical Review

    Algorithmic quantum simulation of memory effects

    Get PDF
    We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be reached with polynomially scaling resources, evaluated as the time required for the simulation

    The diffuse neutrino flux from the inner Galaxy: constraints from very high energy gamma-ray observations

    Full text link
    Recently, the MILAGRO collaboration reported on the detection of a diffuse multi-TeV emission from a region of the Galactic disk close to the inner Galaxy. The emission is in excess of what is predicted by conventional models for cosmic ray propagation, which are tuned to reproduce the spectrum of cosmic rays observed locally. By assuming that the excess detected by MILAGRO is of hadronic origin and that it is representative for the whole inner Galactic region, we estimate the expected diffuse flux of neutrinos from a region of the Galactic disk with coordinates −40∘<l<40∘-40^{\circ} < l < 40^{\circ}. Our estimate has to be considered as the maximal expected neutrino flux compatible with all the available gamma ray data, since any leptonic contribution to the observed gamma-ray emission would lower the neutrino flux. The diffuse flux of neutrinos, if close to the maximum allowed level, may be detected by a km3^3--scale detector located in the northern hemisphere. A detection would unambiguously reveal the hadronic origin of the diffuse gamma-ray emission.Comment: submitted to Astroparticle Physic

    Pushing 1D CCSNe to explosions: model and SN 1987A

    Full text link
    We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M⊙_{\odot}. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are needed to obtain explosion energies around 1 Bethe, as observed for SN1987A. However, all the models with sufficiently high explosion energy overproduce 56^{56}Ni. We conclude that fallback is needed to reproduce the observed nucleosynthesis yields. The nucleosynthesis yields of 57−58^{57-58}Ni depend sensitively on the electron fraction and on the location of the mass cut with respect to the initial shell structure of the progenitor star. We identify a progenitor and a suitable set of PUSH parameters that fit the explosion properties of SN1987A when assuming 0.1M⊙_{\odot} of fallback. We predict a neutron star with a gravitational mass of 1.50M⊙_{\odot}. We find correlations between explosion properties and the compactness of the progenitor model in the explored progenitors. However, a more complete analysis will require the exploration of a larger set of progenitors with PUSH.Comment: revised version as accepted by ApJ (results unchanged, text modified for clarification, a few references added); 26 pages, 20 figure
    • …
    corecore