21 research outputs found

    Molecular cloning, differential expression and 3D structural analysis of the MHC class-II β chain from sea bass (Dicentrarchus labrax L.)

    Get PDF
    The major histocompatibility complex class I and II molecules (MHC-I and MHC-II) play a pivotal role in vertebrate immune response to antigenic peptides. In this paper we report the cloning and sequencing of the MHC class II b chain from sea bass (Dicentrarchus labrax L.). The six obtained cDNA sequences (designated as Dila-DAB) code for 250 amino acids, with a predicted 21 amino acid signal peptide and contain a 28 bp 50-UTR and a 478 bp 30-UTR. A multiple alignment of the predicted translation of the Dila-DAB sequences was assembled together with other fish and mammalian sequences and it showed the conservation of most amino acid residues characteristic of the MHC class II b chain structure. The highest basal Dila-DAB expression was found in gills, followed by gut and thymus, lower mRNA levels were found in spleen, peripheral blood leucocytes (PBL) and liver. Stimulation of head kidney leukocytes with LPS for 4 h showed very little difference in the Dila-DAB expression, but after 24 h the Dila-DAB level decreased to a large extent and the difference was statistically significant. Stimulation of head kidney leukocytes with different concentrations of rIL-1b (ranging from 0 to 100 ng/ml) resulted in a dose-dependent reduction of the Dila-DAB expression. Moreover, two 3D Dila-DAB*0101 homology models were obtained based on crystallographic mouse MHC-II structures complexed with D10 T-cell antigen receptor or human CD4; features and differences between the models were evaluated and discussed. Taken together these results are of interest as MHC-II structure and function, molecular polymorphism and differential gene expression are in correlation with disease resistance to virus and bacteria in teleost fish.L'articolo è disponibile sul sito dell'editore http://www.sciencedirect.com/This work was supported by the European Commission within the project IMAQUANIM (EC contract number FOOD-CT-2005-007103)

    CD4 homologue in sea bass (Dicentrarchus labrax): molecular characterization and structural analysis

    Get PDF
    CD4 is a transmembrane glycoprotein fundamental for cell-mediated immunity. Its action as a T cell coreceptor increases the avidity of association between a T cell and an antigen-presenting cell by interacting with portions of the complex between MHC class II and TR molecules. In this paper we report the cDNA cloning, expression and structural analysis of a CD4 homologue from sea bass (Dicentrarchus labrax). The sea bass CD4 cDNA consists of 2071 bp that translates in one reading frame to give the entire molecule containing 480 amino acids. The analysis of the sequence shows the presence of four putative Ig-like domains and that some fundamental structural features, like a disulphide bond in domain D2 and the CXC signalling motif in the cytoplasmic tail, are conserved from sea bass to mammals. Real-time PCR analysis showed that very high levels of CD4 mRNA transcripts are present in thymus, followed by gut and gills. In vitro stimulation of head kidney leukocytes with LPS and PHA-L gave an increase of CD4 mRNA levels after 4 h and a decrease after 24 h. Homology modelling has been applied to create a 3D model of sea bass CD4 and to investigate its interaction with sea bass MHC-II. The analysis of the 3D complex between sea bass CD4 and sea bass MHC-II suggests that the absence of a disulfide bond in the CD4 D1 domain could make this molecule more flexible, inducing a different conformation and affecting the binding and the way of interaction between CD4 and MHC-II. Our results will add new insights into the sea bass T cell immune responses and will help in the identification of T cell subsets in teleost fishes to better understand the evolution of cell-mediated immunity from fish to mammals.L'articolo è disponibile sul sito dell'editore http://www.sciencedirect.com

    Spanish Universities' Sustainability Performance and Sustainability-Related R&D+I

    Get PDF
    For its scope and the breadth of its available resources, the university system is one of the keys to implementing and propagating policies, with sustainability policies being among them. Building on sustainability performance in universities, this study aimed to: Identify the procedures deployed by universities to measure sustainability; detect the strengths and weaknesses of the Spanish university system (SUS) sustainability practice; analyse the SUS contributions to sustainability-related Research, Development and Innovation (R&D&;43;I)# and assess the efficacy of such practices and procedures as reported in the literature. The indicators of scientific activity were defined by applying scientometric techniques to analyse the journal (Web of Science) and European project (CORDIS) databases, along with reports issued by national institutions. The findings showed that measuring sustainability in the SUS is a very recent endeavour and that one of the strengths is the university community's engagement with the ideal. Nonetheless, high performance is still elusive in most of the items analysed. Whereas universities account for nearly 90 % of the Spanish papers published in the WoS subject category, Green and Sustainable Science and Technology, their contribution to research projects is meagre. A divide still exists in the SUS between policies and results, although the gap has been narrowing in recent years

    Spanish Universities’ Sustainability Performance and Sustainability-Related R&D+I

    No full text
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).For its scope and the breadth of its available resources, the university system is one of the keys to implementing and propagating policies, with sustainability policies being among them. Building on sustainability performance in universities, this study aimed to: Identify the procedures deployed by universities to measure sustainability; detect the strengths and weaknesses of the Spanish university system (SUS) sustainability practice; analyse the SUS contributions to sustainability-related Research, Development and Innovation (R&D+I); and assess the efficacy of such practices and procedures as reported in the literature. The indicators of scientific activity were defined by applying scientometric techniques to analyse the journal (Web of Science) and European project (CORDIS) databases, along with reports issued by national institutions. The findings showed that measuring sustainability in the SUS is a very recent endeavour and that one of the strengths is the university community’s engagement with the ideal. Nonetheless, high performance is still elusive in most of the items analysed. Whereas universities account for nearly 90 % of the Spanish papers published in the WoS subject category, Green and Sustainable Science and Technology, their contribution to research projects is meagre. A divide still exists in the SUS between policies and results, although the gap has been narrowing in recent years.The methods used were developed on the framework of the project entitled ‘Detection of new research and innovation fronts. Analysis of knowledge flows in the scientific domain, industry and society in the field of energy efficiency’ (ref.: CSO2014-51916-C2-1-R), funded by the Spanish Ministry of the Economy and CompetitivenessThis project received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant 741657, SciShops.euPeer reviewe
    corecore