Abstract: The major histocompatibility complex class I and II molecules (MHC-I and MHC-II) play a pivotal role in vertebrate immune response to antigenic peptides. In this paper we report the cloning and sequencing of the MHC class II b chain from sea bass (Dicentrarchus labrax L.). The six obtained cDNA sequences (designated as Dila-DAB) code for 250 amino acids, with a predicted 21 amino acid signal peptide and contain a 28 bp 5'-UTR and a 478 bp 3'-UTR. A multiple alignment of the predicted translation of the Dila-DAB sequences was assembled together with other fish and mammalian sequences and it showed the conservation of most amino acid residues characteristic of the MHC class II b chain structure. The highest basal Dila-DAB expression was found in gills, followed by gut and thymus, lower mRNA levels...
were evidenced in spleen, peripheral blood leucocytes (PBL) and liver. Stimulation of head kidney leukocytes with LPS for 4 h showed very little difference in the Dila-DAB expression, but after 24 h the Dila-DAB level decreased to a large extent and the difference was statistically significant. Stimulation of head kidney leukocytes with different concentrations of rIL-1β (ranging from 0 to 100 ng/ml) resulted in a dose-dependent reduction of the Dila-DAB expression. Moreover, two 3D Dila-DAB*0101 homology models were obtained based on crystallographic mouse MHC-II structures complexed with D10 T-cell antigen receptor or human CD4: features and differences between the models were evaluated and discussed. Taken together these results are of interest as MHC-II structure and function, molecular polymorphism and differential gene expression are in correlation with disease resistance to virus and bacteria in teleost fish.
Dear Prof. Tony Ellis,

I am sending you a revised version of the paper entitled: "MOLECULAR CLONING, DIFFERENTIAL EXPRESSION AND 3D STRUCTURAL ANALYSIS OF THE MHC CLASS-II beta CHAIN FROM SEA BASS (Dicentrarchus labrax L.)" (Ref. n. FSIM-D-07-00013), author team: Francesco Buonocore, Elisa Randelli, Daniela Casani, Susan Costantini, Angelo Facchiano, Giuseppe Scapigliati, Renè J.M. Stet.

I have taken into account most of the suggestions from the referees and I have attached a list of all the changes made in the paper (in the text you will find **in bold** the phrases that differ from the first version).

I hope that now the paper will be accepted for the publication, but let me know if there is any problem.

Best regards

Dr. Francesco Buonocore
Dear Prof. Tony Ellis,

I am sending you a revised version of the paper entitled: "MOLECULAR CLONING, DIFFERENTIAL EXPRESSION AND 3D STRUCTURAL ANALYSIS OF THE MHC CLASS-II beta CHAIN FROM SEA BASS (Dicentrarchus labrax L.)" (Ref. n. FSIM-D-07-00013), author team: Francesco Buonocore, Elisa Randelli, Daniela Casani, Susan Costantini, Angelo Facchiano, Giuseppe Scapigliati, Renè J.M. Stet.

I have taken into account most of the suggestions from the referees and I have attached a list of all the changes made in the paper (in the text you will find in bold the phrases that differ form the first version).

I hope that now the paper will be accepted for the publication, but let me know if there is any problem.

Best regards

Dr. Francesco Buonocore

Reviewer #1:

This manuscript describes the cloning of 6 cDNA sequences encoding MHC class II beta from sea bass. The sequences have been aligned and analyzed in a phylogenetic tree, the expression of the gene in head kidney leukocytes in response to stimulation with LPS and II-beta is examined by real time PCR and some homology models have been derived.

General Comments

This paper is generally well written, although the English need polishing. The data provided are interesting, but much of it is in silico derived from the sequences and the addition of a few more "wet lab" experiments would greatly enhance the story the authors are trying to tell. For example, sequencing cDNAs does not really give gene copy number or even number of expressed genes due to primer bias/fit among other problems. The addition of a Southern blot, an analysis of the expression levels in different tissues or the examination of the real degree of polymorphism by sequencing the putative PBR regions from several other individuals (up to 50 sequences) would provide more evidence that these are the functional genes of Sea Bass and enhance the publish ability of this manuscript.

I have added an analysis of the MHC expression levels in different tissues. The Southern blot has not been added as an attempt to evidence the number of class II B loci in sea bass is already present in the paper (see the beginning of “Results” section). The examination of the real degree of polymorphism was not in the aim of the authors, but the idea was to focus on the analysis of functional evidences related to the MHC gene.

The discussion is very weak and fails to discuss important questions such as why the expression of genes that are key to the immune response is down-regulated after stimulation - this seems to mean that the immune response is being shut down. The rest of the discussion needs more explanation of the data rather than simply saying it agrees or disagrees with the literature.

I have improved the Discussion taking into account the reviewer suggestions.
Specific comments:

line 63: Redundant language

I have changed the phrase.

I have clarified the sentence.

line 229 "they encode"

I have corrected the mistake.

line 244; 11% identity - no "of"

I have corrected the mistake.

line 257 ; The trout glycosylation site is more than just "potential" the protein is definitely glycosylated - see: Immunogenetics (2006) 58: 443-453

“Potential” was referred to sea bass and not to the other species, I have added the reference.

Line 258: Figure 2 - why were amino acid sequences used? DNA has more usable data and avoid convergence more. Why are some names capitalized and others not?

Yes, usually DNA has more usable data and avoid convergence more, but we got similar results with DNA or amino acid, so we decide to use the latter as it was more straightforward after the alignment. I have used only capitalized names in the tree.

Line 265, figure 3 Did you measure IL-1β expression after LPS stimulation to ensure you actually got stimulation? (oh I see you did at line 392-394 - you should mention this earlier). Sometimes LPS doesn’t work so well on fish, especially from E coli. This concentration seems very low - other papers have used as much as 100ug/ml. Why was this concentration chosen - was a preliminary experiment using a range of concentrations done to assess how much is needed to elicit a response? Why did the expt only go to 24 hours? It seems that MHC expression should be affected for a long time after that.

I have added a phrase in the “Results” section related to the studying of IL-1β expression to ensure LPS stimulation. The LPS concentration worked well in a lot of different experiments we performed in the past (for a reference see: G. Scapigliati, F. Buonocore, S. Bird, J. Zou, P. Pelegrin, C. Falasca, D. Prugnoli and C.J. Secombes. Phylogenesis of cytokines: molecular cloning and expression analysis of sea bass \textit{Dicentrarchus labrax} interleukin-1β. \textit{Fish and Shellfish Immunology} (2001), 11(8):711-726; F. Buonocore, E. Randelli, D. Casani, M. Mazzini, I. Cappuccio, C.J. Secombes, G. Scapigliati. cDNA cloning and expression analysis of a cyclooxygenase-2 from sea bass \textit{(Dicentrarchus labrax} L.) after vaccination. \textit{Aquaculture} (2005), 245(1-4): 301-310; F. Buonocore, M. Forlenza, E. Randelli, S. Benedetti, P. Bossù, S. Meloni, C.J. Secombes, M. Mazzini, G. Scapigliati. Biological activity of sea bass \textit{(Dicentrarchus labrax} recombinant interleukin-1β. \textit{Marine Biotechnology} (2005), 7(6): 609-617), so we used the same. We did not look at the MHC expression after 24 h both because LPS elicit inflammatory responses quickly (few hours post-stimulation) and as the viability of
fish leukocyte cultured cells is quite low, so to study the MHC expression for a long time we should perform “in vivo” experiments.

Line 290 is 34% identity enough to do this?

Line 369-370: there is variability - you can't say it is "high" based on 6 sequences

I have changed the phrase.

Lines 393-403: but why does MHC expression go down - this is decreasing the immune response in response to a simulated infection - isn't this bad?? You need to discuss the implications of this? Does the MHC expression increase later????

MHC down-regulation in our samples could be very likely linked to the already reported mechanisms for the control of inflammation responses in mammals that, uncontrolled, may have dangerous effects. For example, during early inflammation, various cytokines are produced and they down-regulate the expression of inflammation-related molecules.

Reviewer #2

General comments:

The manuscript outlines the isolation and structural analysis of six full length MHC class II B sequences cDNA sequences in Sea Bass, a topic which should be of relevance and interest to the readership of Fish and Shellfish Immunology. While I can't speak authoritatively about the structural analysis, the science appears sound and the methods clear. There are a few instances where the English wording could use improvement (see below), but generally the manuscript is well organised and written.

I would have liked further elaboration about the potential impact of the modeling exercise on our understanding of the function of this gene.

I have improved the Discussion taking into account the reviewer suggestions.

Given that the two models differed in perhaps the most important site-the ligand binding region, how can one differentiate which is correct?

The two models represent two conformations of the same protein under different conditions, i.e. the interaction with two different ligands, and this may explain why the main structural differences involve the binding sites, as observed by the referee. It is not possible to indicate if one model is better than the other. Each model predicts the structural organization of the protein when it interacts with CD4 or TCR, so both models can be useful for further experimental studies to simulate the interaction with the respective ligand and confirm the structural prediction.
How does the size of the binding site relate to the size of the potential ligand?

The binding sites for the antigen peptide and CD4 resulted larger in the MHC conformation which interacts with these ligands, and the binding site for TCR resulted larger in the MHC conformation which interacts with TCR. We wrote that this observation confirms the reliability of the two models. In fact, this result is in agreement with the ability of any protein to adopt a conformation more suitable to the interaction. The larger surface implies a better ability to interact with the ligand. As an example, it is well known that enzymes expose better the catalytic site in the presence of the substrate. Therefore, the measures of the surfaces for the binding sites confirm that our models are suitable to simulate the different conformations of MHC when it interacts with the two different ligands.

The authors should consider revising their final concluding sentence, as it is too long and cumbersome. As a note, they have not demonstrated that the genes they identified are actually maintained by pathogen-driven selection.

The final sentence has been revised.

English could be better in places, some of which are outlined below:

Line 194: significativity -- what is that? Should be significance

I have changed the word.

Line 232: in order to verify the number of class II B locus (should be loci)

I have changed the word.

Line 233: perfomed should be performed

I have changed the word.

Line 239: seems to express up to three class II b loci at least (up to and at least are contradictory terms. Should read at least three class IIb loci)

I have changed the phrase.

Line 325: where the strands include less amino acids (should read fewer amino acids)

I have changed the word.

Line 361: growing evidences suggest should read growing evidence suggests

I have changed the phrase.

Line 397: I am not sure what is meant by similar results…after infection with IHNV on MHC class I-what? That expression of class I or class II was downregulated?

I have changed the phrase.

Line 404: the identity percentage should read percentage identity
I have changed the phrase.
Figure 1

<table>
<thead>
<tr>
<th>Signal Peptide</th>
<th>Beta-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DilaDAB*0101</td>
<td>MASSFLSF LLFISSLTY AQGRFIPIT RQFSTDNLK DIYQSTSFY NMEMLVFSS SUVQYVOTE</td>
</tr>
<tr>
<td>DilaDAB*0201</td>
<td></td>
</tr>
<tr>
<td>DilaDAB*0301</td>
<td></td>
</tr>
<tr>
<td>DilaDAB*0401</td>
<td></td>
</tr>
<tr>
<td>DilaDAB*0501</td>
<td></td>
</tr>
<tr>
<td>DilaDAB*0601</td>
<td></td>
</tr>
<tr>
<td>Flounder</td>
<td></td>
</tr>
<tr>
<td>Trout</td>
<td></td>
</tr>
<tr>
<td>Salmon</td>
<td></td>
</tr>
<tr>
<td>Catfish</td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td></td>
</tr>
</tbody>
</table>

Bet-2

<table>
<thead>
<tr>
<th>Signal Peptide</th>
<th>Connecting</th>
<th>Transmembrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>DilaDAB*0101</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0201</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0301</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0401</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0501</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Sardine</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Turbot</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Salmon</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Catfish</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Chicken</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Human</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Mouse</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
</tbody>
</table>

Cytoplasmic Tail

<table>
<thead>
<tr>
<th>Signal Peptide</th>
<th>Connecting</th>
<th>Transmembrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>DilaDAB*0101</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0201</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0301</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0401</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>DilaDAB*0501</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Flounder</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Salmon</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Catfish</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Chicken</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Human</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
<tr>
<td>Mouse</td>
<td>1QY5</td>
<td>1QY5</td>
</tr>
</tbody>
</table>

Figure(s)
Figure 2
Figure 3

Gene normalised to beta-actin

![Bar chart showing gene expression levels in different tissues: Spleen, PBL, Brain, Liver, Gut, Thymus, HK, Gills.](chart.png)
Gene normalised to beta-actin

A

Gene normalised to beta-actin

B

Contr
LPS

0
4h
24h

Contr

rIL-1 beta concentration

0
0.2
0.4
0.6
0.8
1
1.2

Con
10ng
30ng
50ng
100ng
50ng/95°C

* * * *

Figure(s)
Figure 6

(a) Model-1JL4

(b) Model-1D9K

N-term

C-term

N-term

C-term
MOLECULAR CLONING, DIFFERENTIAL EXPRESSION AND 3D STRUCTURAL ANALYSIS OF THE MHC CLASS-II β CHAIN FROM SEA BASS (Dicentrarchus labrax L.)

Francesco Buonocore*, Elisa Randelli, Daniela Casani, Susan Costantini2, Angelo Facchiano2, Giuseppe Scapigliati, Renè J.M. Stet1

1 Dipartimento di Scienze Ambientali, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
2 Scottish Fish Immunology Research Centre, University of Aberdeen, Tillydrone Avenue, AB24 2TZ Aberdeen, Scotland, UK.
3 CNR, Istituto di Scienze dell'Alimentazione, I-83100 Avellino, Italy

*Corresponding author: Dr. Francesco Buonocore, Dipartimento di Scienze Ambientali, Università della Tuscia, Largo dell’Università s.n.c., I-01100 Viterbo, Italy.
Phone +39-0761-357644; Fax +39-0761-357179; Email: fbuono@unitus.it
ABSTRACT

The major histocompatibility complex class I and II molecules (MHC-I and MHC-II) plays a pivotal role in vertebrate immune response to antigenic peptides. In this paper we report the cloning and sequencing of the MHC class II β chain from sea bass (*Dicentrarchus labrax* L.). The six obtained cDNA sequences (designated as Dila-DAB) code for 250 amino acids, with a predicted 21 amino acid signal peptide and contain a 28 bp 5'-UTR and a 478 bp 3'-UTR. A multiple alignment of the predicted translation of the Dila-DAB sequences was assembled together with other fish and mammalian sequences and it showed the conservation of most amino acid residues characteristic of the MHC class II β chain structure. The highest basal Dila-DAB expression was found in gills, followed by gut and thymus, lower mRNA levels were found in spleen, peripheral blood leucocytes (PBL) and liver. Stimulation of head kidney leukocytes with LPS for 4 h showed very little difference in the Dila-DAB expression, but after 24 h the Dila-DAB level decreased to a large extent and the difference was statistically significant. Stimulation of head kidney leukocytes with different concentrations of rIL-1β (ranging from 0 to 100 ng/ml) resulted in a dose-dependent reduction of the Dila-DAB expression. Moreover, two 3D Dila-DAB*0101 homology models were obtained based on crystallographic mouse MHC-II structures complexed with D10 T-cell antigen receptor or human CD4: features and differences between the models were evaluated and discussed. Taken together these results are of interest as MHC-II structure and function, molecular polymorphism and differential gene expression are in correlation with disease resistance to virus and bacteria in teleost fish.

Keywords: major histocompatibility complex class (MHC) II β chain; sea bass; *Dicentrarchus labrax*; cloning; polymorphism; expression analysis; quantitative PCR; 3D structure.
1. INTRODUCTION

The major histocompatibility complex class I and II molecules (MHC-I and MHC-II) are fundamental components of the immune response to foreign protein antigens. They have been extensively studied in mammals, especially in humans [1], mouse and rat. The MHC molecules are heterodimers formed by α and β membrane glycoproteins that bind self and non-self peptides for presentation on the cell surface to T-cells. MHC-II binds peptides for presentation to the CD4+ T helper cells [2-3] and it is encoded by two genes, A and B [4], in mammals. MHC-II genes are constitutively expressed in antigen-presenting cells such as macrophages, B cells, monocytes and dendritic cells. They are highly polymorphic with multiple loci and alleles and this polymorphism gives the possibility to bind a large number of peptide ligands. Crystal structures of different MHC II proteins in mammals have shown that bound peptides are deeply integrated into the MHC structure using two main classes of interactions: 1) conserved hydrogen bonds to the peptide backbone; 2) at least four prominent pockets that accept peptide side chains [5-7].

In teleosts, MHC class I and II genes have been identified in various species and it has been established that class I and II loci reside in different linkage groups [8]. Fish MHC class II molecules are comprised of α and β subunits, like in mammals, and class II B loci are in separate linkage groups in all Euteleostei [9]. MHC class II genes have been isolated from numerous fish species such as striped sea bass (Morone saxatilis) [10], red sea bream (Chrysophrys major) [11], various cichlids [12], salmonids [13-15] and different cyprinids [16-20].

MHC II genes in teleosts are also polymorphic and various studies have tried to establish the association of the MHC diversity [21-22] or differential gene expression [22-27] with disease resistance to virus and bacteria, as such associations were identified in humans [28] and chicken [29].

In this study we report the cloning and sequencing of the MHC class II β chain from sea bass (Dicentrarchus labrax L.), one of the most important species in aquaculture in the South Mediterranean, and studied its basal expression levels and under different “in vitro” conditions by.
real-time PCR. These results will add a new tool for studying the effects of vaccination and immuno-stimulation on the sea bass immune system. Moreover, we predicted, for the first time, the 3D structure of a MHC class II \(\beta \) chain from a teleost fish by homology modelling, a starting point for successive structural-functional investigations on this fundamental immune molecule.
2. MATERIALS AND METHODS

2.1 Sea bass MHC class II β chain cloning and sequencing

Two degenerate primers (MHCFR1 5’- TGCWGYGYRTAYGRSTTCTA CCC – 3’ and
MHCRV1 5’ AGGCTKGKRTGCTCCACCWRCA –3’ where Y = C/T, K = G/T, R = G/A, S =
G/C, W = A/T) corresponding to highly conserved regions of known MHC class II β genes [30]
were used for RT-PCR on total RNA extracted with Tripure (Roche) solution from one juvenile sea
bass (150 g of weight) head kidney. The leukocyte head kidney cells were obtained after Percoll
purification as a single fraction following the procedures described in [31]. RT-PCR was performed
using Ready-To-Go RT-PCR Beads (Amersham Pharmacia). For cDNA synthesis, 1 µg of total
RNA and 0.5 µg of random primers [pd(N)₆] were used in each reverse transcription reaction in a
total volume of 50 µl. Reactions were conducted using the Mastercycler personal (Eppendorf). The
cycling protocol was one cycle of 94°C for 5 min, 35 cycles of 94°C for 45 s, 60°C for 45 s, 72°C
for 45 s, followed by one cycle of 72 °C for 10 min. PCR products (15 µl) were visualised on 1%
(w/v) agarose gels containing ethidium bromide (10 ng/ml) using hyperladder IV (Bioline) as size
marker. Controls for the presence of DNA contamination were performed using the RNA samples
as template. DNA amplified by PCR was purified using the QIAquick Gel Extraction Kit (QIagen),
inserted into the pGEM-T Easy vector (Promega) and transfected into competent JM109
Escherichia coli cells. Plasmid DNA from at least ten independent clones was purified using the
Wizard Plus SV Minipreps DNA Purification System (Promega) and sequenced using MWG DNA
Sequencing Services. Sequences generated were analysed for similarity with other known MHC
class II β sequences using the FASTA [32] and BLAST [33] programs and multiple alignments
were made with MEGA 3.1 Software [34].

Further primers were designed based on the initial sea bass MHC class II β sequences for 5’-
and 3’- rapid amplification of cDNA ends (RACE)-PCR (MHC-F1 5’-
TCAGAGTGAGCTGGCTCAGA-3’ and MHC-F2 5’-GGTCTGGAGAGAAGATCTCC-3’; MHC-
R1 5' -GGAACCAGAATCCTTCCTCG- 3' and MHC-R2 5' - TGTGTTTGGGGTAGAAGCCG- 3'). cDNA was synthesised from the same total head kidney RNA with the First-strand cDNA Synthesis kit (Amersham Pharmacia) following the manufacturers instructions. For 3’ RACE-PCR, cDNA was transcribed from the same total head kidney RNA using an oligo-dT adaptor primer (5'-CTCGAGATCGATCAGGCCTGCT15-3'). PCR was performed initially with the MHC-F1 primer and the oligo-dT adaptor primer, followed by a semi-nested PCR using MHC-F2 primer and the adaptor primer (5'-CTCGAGATCGATCAGGGCCGC-3'). For 5’ RACE-PCR, cDNA was transcribed from total RNA using the oligo-dT primer, treated with E. coli RNase H (Promega), purified using a PCR Purification Kit (QIAgen), and tailed with poly(C) at the 5’ end with terminal deoxynucleotidyl transferase (TdT, Promega). PCR was performed initially with MHC-R1 primer and an Oligo-dG primer (5'-GGGGGGGIGGGIIGGGIIGG-3'), and then semi-nested with MHC-R2 and the oligo-dG primers. Sequencing and similarity searches were as described above.

The obtained cDNA sequences were analysed for the presence of a signal peptide, using SignalP software [35], and of N- (with the NetNGlyc 1.0 Server) and O-linked glycosylation sites [36]. Comparison of the sea bass MHC class II β amino acid sequences to their counterparts from other fish and mammalian species was carried out using the DIALIGN program [37]. A phylogenetic tree was constructed by the “neighbour-joining” method using MEGA 3.1 Software [34] on full-length amino acid sequences and bootstrap values calculated.

2.2 Basal MHC class II β chain expression

To study the IL-10 basal expression, 5 sea bass juveniles (150 g of weight) were sampled and leucocytes from different tissues and organs [spleen, peripheral blood leukocytes (PBL), brain, liver, gut, thymus, head kidney (HK), gills] obtained as described in [31]. Total RNA was extracted with Tripure (Roche). For the reverse transcription the BioScript RNase H minus (Bioline) enzyme was used with the following protocol: 2 µg of total RNA was mixed with 1 µl of random hexamer (0.2 µg/µl; Amersham Pharmacia) and nuclease free water was added to a final volume of 12 µl. This mixture was incubated at 70°C for 5
min and then cooled on ice. Successively, 0.4 µl of a reaction mix containing 100 mM dNTPs (25mM each; Promega), 4µl of 5X Reaction buffer , nuclease free water to a final volume of 19.75 µl and 0.25 µl of BioScript at 200 u/µl were added and the solution incubated first at 25 °C for 10 min and than at 37 °C for 60 min. Finally, the reaction was stopped by heating at 70 °C for 10 min.

The expression level of MHC class II β chain was determined with a Mx3000PTM real time PCR system (Stratagene) equipped with version 2.02 software and using the Brilliant SYBR Green Q-PCR Master Mix (Stratagene) following manufacturer’s instructions, with ROX as internal reference dye. Specific PCR primers were designed for the amplification of about 200 bp products from both MHC class II β chain and β-actin (used as housekeeping gene) transcripts. The primers were: RTMHCFR 5’-CAGAGACGGACAGGAAG–3’ and RTMHCRRV2 5’- CAAGATCAGACCCAGGA-3’, RTACTFR2: 5’-ATGTACGTTGCCATCC-3’ and RTACTRVR2: 5’-GAGATGCCACGCTCTC-3’, respectively. Approximately 50 ng of cDNA template was used in each PCR reaction. The PCR cycle conditions were 95 °C for 10 min, followed by 35 cycles of 95 °C for 45 s, 52 °C for 45 s and 72 °C for 45 s. Triplicate reactions were performed for each template cDNA and the template was replaced with water in all blank control reactions. Each run was terminated with a melting curve analysis (all points method) which resulted in a melting peak profile specific for the amplified target DNA and the PCR products were examined by agarose gel electrophoresis. Fluorescence data were collected during the extension stage of amplification. Analysis of the data was carried out using the endpoints method option of the Mx3000PTM software.

Data were expressed as the mean ± SE and the tissue with the lowest MHC class II β chain expression was used as calibrator and the β-actin as the normaliser.

2.3 In vitro sea bass MHC class II β chain expression after stimulation
The “in vitro” expression of MHC class II β chain was studied by stimulating leukocytes isolated by Percoll gradients [31] from the head kidney of 5 sea bass juveniles (150 g of weight).

In one stimulation, the head kidney leucocytes from the single fishes after Percoll purification, were adjusted to 1 X 10⁵ cells/ml and incubated at 18 °C for 4 h and 24 h with 5 µg/ml of lipopolysaccharide (LPS from *E. coli* 0127:B8, Sigma).

In another stimulation, the head kidney leucocytes from the single fishes after Percoll purification, were adjusted to 1 X 10⁵ cells/ml and incubated at 18 °C for 24 h in the presence of 10, 30, 50 or 100 ng/ml of sea bass recombinant IL-1β (rIL-1β) [38-39], with 50 ng/ml of rIL-1β heated at 95 °C for 20 min or with no recombinant protein, in 5 ml of L15 medium (Gibco).

Total RNA was extracted from experimental cultures after the stimulations with Tripure (Roche) and real-time PCR conditions were as described above for the basal expression.

Data were expressed as the mean ± SE and the differences from the control at the same time have been considered significant if p < 0.05 using the standard student *t* test to analyse the significance.

2.4 Sea bass MHC class II β chain protein modelling

Three-dimensional models of sea bass MHC class II β chain were created following the homology modelling procedure described in previous papers [40-44], also in agreement with the rules recently reviewed [45] to improve the quality of the modelling results. The BLAST program [33] was used to find homologous proteins in databases. Structure predictions of sea bass MHC class II β chain were based on the availability of the three-dimensional models of the homologous mouse MHC I-A^K chain β protein complexed with antigen peptide and D10 T-cell antigen receptor [46] (PDB code: 1D9K) and with antigen peptide and human CD4 [47] (PDB code: 1JL4). The alignment of the protein sequences was made with CLUSTALW program [48] and a few manual refinements were added to account for the position of secondary structures. Full-atom models of sea bass MHC were created with the MODELLER module [49] of Quanta (Accelrys, Inc., San Diego,
CA, USA) by using as template each of two crystallographic structures, by setting 4.0 Angstroms as RMS deviation among initial models and by full optimization of models, i.e. multiple cycles of refining with conjugate gradients minimization and molecular dynamics with simulated annealing. The best models were chosen by evaluating their stereochemical quality with the PROCHECK program [50] and a scoring function with ProsaII program [51]. Secondary structures were assigned by the DSSP program [52]. Search for structural classification was performed on CATH database [53]. The “Protein-Protein Interaction Server” (http://www.biochem.ucl.ac.uk/bsm/PP/server) [54] and the program NACCESS [55] were used to identify the amino acids at the protein-protein interface in the crystallographic complexes. Molecular superimposition, RMSD values and figures were obtained with the InsightII package (Accelrys, Inc., San Diego, CA, USA).
3. RESULTS

3.1 Sea bass MHC class II β chain cloning and sequencing

PCR with primers MHCFR1 and MHCRV1 resulted in products of the expected size (190 bp) with similarity to other known MHC class II β sequences (data not shown). 3’-RACE-PCR performed with MHC-F2 (based on the initial 190 bp sequence) and the adaptor primer to extend the sea bass MHC sequence gave a product of about 690 bp that contained the 3’-end of the gene. 5’-RACE-PCR was then performed with MHC-R2 (based on the initial 190 bp sequence) and oligo-dG, and gave a product of about 460 bp that contained the 5’-end of the gene, with some differences between the selected clones. The six full-length nucleotide sequences (EMBL accession numbers AM113466, AM113467, AM113468, AM113469, AM113470, AM113471) are comprised of 1259 amino acids, with a predicted 21 amino acid signal peptide, and a 28 bp 5’-UTR and a 478 bp 3’-UTR (Fig. 1). The 3’-UTR contained a polyadenylation signal (AATAAA) 12 bp upstream of the poly(A) tail.

In order to verify the number of class II B loci, PCR of the open reading frame was performed on the cDNA used for the MHC class II β chain cloning with specific primers (MHCTOTFR 5’-GGCTTCATCCTTTCTCAG-3’ and MHCTOTRV 5’-TACTGGGAACCAGAATCC-3’) and 10 clones were sequenced, confirming the presence of the six different sequences already obtained with the superimposition of the fragments coming from 3’ and 5’ RACE. In addition, 10 clones of the 3’ UTR sequences from the same individual were sequenced and three different sequences were identified, which should demonstrate that sea bass seems to express at least three class II B loci.

A multiple alignment of the predicted translation of Dila-DAB sequences was assembled (Fig. 1) together with some fish, mammalian and avian species to investigate the conservation of characteristic amino acid residues. The β-1 domain comprises of 92 amino acids, starts with an alanine residue, which is conserved in all fish sequences except in salmon (Salmo salar) and trout (Oncorhynchus mykiss), and contains few conserved amino acids (11% identity between fish...
species). The β-2 domain is 94 amino acids long, starts with a valine residue conserved in all sequences except in Japanese flounder (*Paralichthys olivaceus*), red sea bream (*Pagrus major*) and cichlid (*Cyphotilapia frontosa*), shows high identity (35%) in the C-proximal region and ends with a conserved tryptophan residue. The connecting peptide consists of 10 amino acids and the transmembrane domain, that contains 22 residues, and has the highest identity percentage (55%). The cytoplasmic tail varies in length in the different species and starts with a conserved tyrosine residue in fish species. The cytoplasmic region contains 13 residues in the Dila-DAB sequences.

The cysteine residues present in the β-1 and β-2 domains are well conserved in all sequences except in the turbot sequence that lacks the cysteine at position 94 of the Dila-DAB sequences. These residues, presumably forming two disulfide intra-chain bonds, are consistent with previous findings in other species [56-57]. No potential O- or N-glycosylation sites were found in the Dila-DAB sequences, in contrast to one present in the red sea bream [11], in the catfish [58] and in rainbow trout [59-60].

Phylogenetic analysis (Fig. 2) conducted using amino acid sequences showed that all fish sequences are in the same cluster and that the six Dila-DAB sequences are in two different groups: one with sequences Dila-DAB*0101, *0201 and *0301 and the other with sequences Dila-DAB*0401, *0501, *0601. The first group of sea bass sequences also contains the striped bass Mosa-DAB sequence. The mammalian and avian sequences are in a different cluster with respect to the fish one.

3.2 Basal MHC class II β chain expression

The expression analysis of IL-10 in organs and tissues of unstimulated sea bass is shown in Figure 3. Real-time PCR products were loaded on agarose gels to exclude the formation of non-specific amplicons and, to take into consideration the individual genetic variability, five different fishes were sampled. MHC class II β chain levels were expressed as a ratio relative to β-actin levels in the same samples after real-time PCR analysis using the tissue with the lowest expression as calibrator. The highest MHC class II β chain expression was detected in gills,
followed by gut and thymus. Lower IL-10 mRNA levels were observed in spleen, PBL, and liver; brain and HK showed the lowest expression levels.

3.3 In vitro sea bass MHC class II β chain expression after stimulation

To investigate the differential “in vitro” sea bass MHC class II β chain expression after stimulation with LPS at 4 and 24 hours and with various rIL-1β concentrations, we used RNA extracted from head kidney leucocytes. Total RNA from 5 different fishes was collected and real-time PCR primers were selected in the conserved region of all Dila-DAB sequences. After amplification and real-time analysis, PCR products for both MHC class II β and β-actin were loaded on agarose gels to exclude the formation of non-specific amplicons. Dila-DAB mRNA levels were compared to the housekeeping gene β-actin levels in the same samples and the values of the quantitative analysis were expressed as a ratio relative to β-actin.

Stimulation with LPS (Fig. 4A) resulted in very little differences in the MHC class II β expression after 4 h with respect to the control at the same time and the statistical analysis performed showed that it was not significant. After 24 h the MHC expression has decreased to a large extent and, in this case, the difference was statistically significant. Moreover, IL-1β expression (data not shown) was studied in the same samples to be sure of the LPS stimulation and showed an increase of IL-1β levels, as was expected.

Stimulation with different concentrations of rIL-1β (from 0 to 100 ng/ml) resulted in a dose-dependent reduction of the Dila-DAB expression (Fig. 4B), with the lowest value obtained from the sample treated with 100 ng/ml of rIL-1β. The differences were statistically significant for all the samples, except for the cell culture stimulated with 10 ng of rIL-1β and the cell culture stimulated with 50 ng/ml of rIL-1β pre-heated at 95 °C for 20 min. The latter observation is consistent with those reported by Hong et al., (2001) [61]. The Dila-DAB mRNA level in this case was almost equal to the control and significantly different with the sample stimulated with the same dose of rIL-1β but not heated.
3.4 Sea bass MHC class II β protein modelling

The Dila-DAB sequences have been analysed with the BLAST program in order to find similar sequences in databases and to perform the structural predictions. The crystallographic structures of mouse MHC I-AK β chain complexed with D10 T-cell antigen receptor (PDB code: 1D9K) and human CD4 (PDB code: 1JL4) were selected as template models and the mouse sequence showed the maximum identity percentage (34%) with the Dila-DAB*0101 sequence (data not shown). This low level of sequence identity required an accurate procedure to build a 3D model of the protein by comparative modeling, in agreement with rules recently reviewed [45], as already applied in previous papers [40-44].

We aligned the Dila-DAB*0101 and mouse MHC sequences using the CLUSTALW program and we performed a few manual adjustments in order to remove gaps within α-helices or β-strands (Figure 5). Starting from this alignment two sets of ten structural models were created, in two distinct sessions, for the Dila-DAB 17-206 region using the templates above indicated. We selected the best model created in each session, i.e. Model1D9K and Model1JL4 by evaluating the stereochemical quality of the models with the PROCHECK package [50] and a scoring function with ProsaII program [51]. The models have been deposited in the Protein Data Bank and accepted with the PDB codes 2H37 and 2H38, respectively.

Figure 6 shows the two Dila-DAB homology models with their secondary structure elements. These models have a classical organization in two distinct domains in agreement with the structural classification reported by CATH database [53] for the model structures of mouse MHC class II β chain. The N-terminal domains are classified as “alpha-beta” and consist of an alpha helical region and a beta sheet of four strands in antiparallel orientation. The C-terminal domains have a “mainly beta” fold and are characterized by an immunoglobulin-like beta-sandwich made of two antiparallel sheets, each consisting of three main strands and few shorter strands, organized in greek-keys motifs. In both models of Dila-DAB four cysteine residues are located in the same positions of the mouse structures and they may form an S-S bond (30-95) in the N-terminal domains, and another S-
S bond (133-189) in the C-terminal domains between the two sheets of the sandwich architecture, as described in mammals [56-57].

The two Dila-DAB models were compared by structural superimposition, RMSD evaluation and secondary structures (Figure 5) to evidence structural changes due to the binding with different ligands (in one case T-cell receptor and in another CD4). The presence of gaps in the alignment made it difficult to perform a complete structural comparison of Dila-DAB models with the template structures. Superimposition of structurally conserved regions of Dila-DAB Model-1JL4 and Model-1D9K with their respective templates gave RMSD values of 1 Angstrom and 0.96 Angstrom, respectively. In contrast, an RMSD value of 1.22 Angstrom was obtained by superimposition of the two Dila-DAB models, i.e. Model-1D9K and Model-1JL4, indicating that these two conformations present some structural differences.

The comparison of secondary structures, assigned by DSSP program in all four models, shows that the alpha helices and the beta-strands are quite conserved in the mouse and Dila-DAB models, although some differences are noted. The short 3\textsubscript{10} helix (GTQ) observed in both crystallographic mouse structures is not present in the two Dila-DAB models. In Dila-DAB Model-1JL4 an alpha helix (Tyr103-Lys110) is observed where in mouse MHC I-AK complexed with human CD4 (PDB code: 1JL4) a short 3\textsubscript{10} helix (SLR) is present. By comparing the two Dila-DAB models, we note that Model-1D9K has a lower content of beta-strand in the C-terminal domain, where the strands include fewer amino acids and are often broken in two shorter strands. In particular, two short beta-strands, spanning residues Tyr171-Ile173 and His176-Tyr179, are present in Model-1D9K, while only one long beta-strand (Tyr171-Tyr179) is present in Model-1JL4. Moreover, Model-1JL4 shows one more short beta strand (Val158-Ser160), similar to its template.

Finally, we analyzed the mouse structures to identify the regions involved in the interactions with peptides, T-cell antigen receptor and CD4, by means of solvent accessibility and protein-protein interaction analyses (data not shown). By homology considerations, the aligned regions in the Dila-DAB sequence can be hypothesized to be similarly involved in ligand binding.
The MHC class I and class II molecules are involved in the presentation of antigens to the adaptive immune system. High polymorphism in MHC molecules has been observed in vertebrates and growing evidence suggests that MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, mating preferences and pregnancy outcome [62]. For these reasons MHC genes are among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates.

In this study, we report the homology cloning of the MHC class II β chain from the teleost sea bass (*Dicentrarchus labrax*). Six different sequences, named Dila-DAB, were obtained. The Dila-DAB cDNAs were predicted to code for proteins of 250 amino acids and their size was in accordance with other fish and mammalian MHC class II β chain molecules. The alignment of Figure 1 showed that the β-1 domains present a variability indicative of a functional peptide binding region and most of the differences between the six Dila-DAB sequences are in this region. On the contrary, the β-2 domains are quite well conserved, especially in the membrane-proximal region. Proposed sites for the interaction of the MHC class II β chain with the MHC class II α chain in mammals [57-58] involve three amino acid residues: two histidines and a glutamic acid. Two of these residues are conserved in all fish sequences (His^{127} and Glu^{178} in the Dila-DAB sequences), while the second histidine residue is substituted in the majority of fish molecules by a proline (Pro^{128} in the Dila-DAB sequences). Putative sites important for human MHC class II β chain interaction with CD4 co-receptor are three residues: a valine, a threonine and a serine [57], and these residues are conserved in all fish sequences (Val^{158}, Thr^{159}, Ser^{160} in the Dila-DAB sequences). The transmembrane domain is highly conserved and has multiple hydrophobic residues that are interspersed with uncharged glycines at position 219, 222, 226 and 233 in the Dila-DAB sequences as seen in the sequences from other species [63].

Phylogenetic analysis, generated using amino acid sequences, showed a close relationship between the Dila-DAB and Mosa-DAB sequences (Fig. 2) providing evidence for trans-species
evolution of the class II sequences. The bootstrapped tree was divided into two different branches
with one containing all fish sequences and the other with mammalian and avian ones.

Moreover, our data suggest that MHC class II β is present in a ubiquitous manner in non-
stimulated tissues and organs, although with different expression levels. The highest
expression was found in gills that in fish are constantly exposed to a plethora of water born
antigens. Moreover, some pathogens use the gills as a portal of entry into the host [64] while
others use this organ as the site of infection [65]. Therefore, the ability to mount strong local
immune reactions to pathogens is fundamental to avoid disease as already observed in
Atlantic salmon [66]. It should be noted that expression of MHC class II β is notably elevated
in the gut that is a mucosal tissue particularly rich in T-cells in sea bass [67].

The “in vitro” MHC class II β chain expression was studied using head kidney leukocytes, because
this tissue in the red sea bream, a species related to sea bass, showed the highest basal MHC β chain
expression [11]. The selected stimulants were LPS, to simulate a pathogen infection, and the sea
bass rIL-1β. This cytokine was chosen as it should promote phagocytosis of foreign particles, which
are subsequently presented to T-cells in conjunction with MHC molecules [68]. LPS stimulation
resulted in a down-regulation of Dila-DAB, which was statistically significant after 24 h and in an
increase of IL-1β gene expression (data not shown), that was used to test the efficacy of the
activation. This is in accordance with the results found in a macrophage-like cell line (SHK-1)
derived from Atlantic salmon [69-70]. A similar down-regulation of MHC class II was also
obtained after challenge with Vibrio anguillarum in red sea bream [11] and of MHC class I
after infection with hematopoietic necrosis virus (IHNV) in rainbow trout [71]. Recombinant
sea bass IL-1β produced a dose-dependent down-regulation in the concentrations used and this has
also been observed in various human cell types [72]. It has been postulated that IL-1β plays a role
in regulating immunoreactivity by inhibiting transcription of the CIITA gene, thereby reducing
class II MHC expression in mammal cell lines [73]. The stimulation has also been performed with
heat inactivated rIL-1β to confirm that the observed down-regulation was due to the cytokine stimulation. MHC down-regulation could be very likely linked to the already reported mechanisms for the control of inflammation responses in mammals that, uncontrolled, may have dangerous effects. During early inflammation, various cytokines are produced and they down-regulate the expression of inflammation-related molecules [74]. More experiments and tools will be required to demonstrate that something similar happens in fish.

The percentage identity between the N-terminal region of the Dila-DAB*0101 sequence (amino acids 17-206) and mouse MHC sequence, for which crystallographic structures complexed with D10 T-cell antigen receptor and human CD4 are available, gave us the opportunity to apply homology modelling techniques and study the predicted 3D Dila-DAB structures. The two obtained models (Fig. 5) differ mainly in the ligand binding regions. In Model-UL4, we observed that both the antigen peptide binding site (1360 vs 1309 Angstrom²) and the interaction surface with CD4 (775 vs 742 Angstrom²) were larger than in the Model-ID9K. On the contrary, the interaction surface with the T-cell antigen receptor was larger in Model-ID9K (1144 vs 1095 Angstrom²). The fact that each model presents a larger interaction surface for the respective ligand confirms the reliability of the prediction. The experimental use of synthetic peptides designed on the basis of the amino acids present on the interaction surfaces with the two different ligands should block the non-covalent bond and will be useful to confirm the structural prediction and for functional investigations.

In conclusion, the availability of these Dila-DAB sequences will add new insight into the MHC variability in vertebrates, that is linked to parasite resistance, and will give the possibility to analyse the sea bass MHC class II expression levels after vaccination and immuno-stimulation protocols.

REFERENCES

ACKNOWLEDGEMENTS

This work was supported by the European Commission within the project IMAQUANIM (EC contract number FOOD-CT-2005-007103).

FIGURE LEGENDS

Fig. 1. Alignment of the predicted sea bass Dila-DAB amino acid sequences with other known MHC class II β chain molecules. Regions corresponding to the putative signal peptide, β-1 domain, β-2 domain, connecting peptide, transmembrane region and cytoplasmic tail are shown above the sequences. Conserved cysteine residues are evidenced in bold,
conserved amino acid residues are indicated with an asterisk, while amino acid residues present at the starting point of the different regions considering the human crystal structure are in bold and underlined. Accession numbers: Dila-DAB *0101 (Dicentrarchus labrax) AM113466; Dila-DAB *0201 (Dicentrarchus labrax) AM113467; Dila-DAB *0301 (Dicentrarchus labrax) AM113468; Dila-DAB *0401 (Dicentrarchus labrax) AM113469; Dila-DAB *0501 (Dicentrarchus labrax) AM113470; Dila-DAB *0601 (Dicentrarchus labrax) AM113471; Japanese flounder (Paralichthys olivaceus) AY848955; turbot (Scophthalmus maximus) DQ001730; Atlantic salmon (Salmo salar) X70167; red sea bream (Pagrus major) AY190711; striped sea bass (Morone saxatilis) L33967; rainbow trout (Oncorhynchus mykiss) AF115529; catfish (Ictalurus punctatus) U77597; humphead cichlid (Cyphotilapia frontosa) L13231; human (Homo sapiens) CAA47028; mouse (Mus musculus) AAC05286); chicken (Gallus gallus) NP_001038144).

Fig. 2. Phylogenetic tree showing the relationship between Dila-DAB sequences with other known MHC class II β molecules. The tree was constructed by the “neighbour-joining” method and was bootstrapped 10000 times. 0.1 indicates the genetic distance.

Fig. 3. MHC class II β chain basal expression in different tissues [spleen, peripheral blood leukocytes (PBL), brain, liver, gut, thymus, head kidney (HK), gills]. MHC class II β mRNA levels were expressed as a ratio relative to β-actin levels in the same samples after real-time PCR analysis using the tissue with the lowest expression as calibrator.

Fig. 4. MHC class II β expression in different stimulating conditions. (A): MHC mRNA levels expressed as a ratio relative to β-actin levels in the same samples after real-time PCR analysis of the head kidney leukocytes stimulated with no LPS (control) and with LPS for 4 and 24 h. (B): MHC mRNA levels expressed as a ratio relative to β-actin levels in
the same samples after real-time PCR analysis of the head kidney leukocytes stimulated with various rIL-1β concentrations.

Data were expressed as the mean ± SE, * indicates p < 0.05 and therefore significantly lower than the respective control.

Fig. 5. Primary and secondary structures of mouse and Dila-DAB*0101 chains, aligned as for the modelling procedure. Stars (*) indicate identical amino acids. The interaction residues of mouse MHC-II with the antigen peptide, the D10 T-cell antigen receptors alpha and beta chains (N-terminal region) and human CD4 (C-terminal region) are reported in bold. Helices and beta strands are marked with continuous and dashed line boxes, respectively.

Fig. 6. Molecular models of sea bass MHC class II β obtained by homology modelling using as template the structure of mouse MHC I-A^K chain β complexed with human CD4, i.e. Models^1JL4 (a) and with D10 T-cell antigen receptor, i.e. Models^1D9K (b). Backbone ribbon and the secondary structure topology are shown: yellow arrows represent beta strands, red cylinders represent alpha helices. Amino and carboxy terminal ends are indicated. Green and yellow sticks indicate the possible presence of two Cys-Cys bonds in each model.