4 research outputs found
Bioinformatic approaches to study the metabolic effect on Gene Regulation
La adaptaci贸n celular a ambientes din谩micos constituye un mecanismo esencial para la supervivencia celular. Las c茅lulas responden a condiciones externas modulando los mecanismos moleculares que regulan expresi贸n g茅nica o la actividad proteica, confiriendo una respuesta r谩pida a cambios metab贸licos externos. Por ello, los mecanismos celulares que captan los cambios metab贸licos consistuyen un paso importante en adaptaci贸n celular, siendo la epigen茅tica el mecanismo que une el metabolismo con la regulaci贸n g茅nica. Las marcas epigen茅ticas confieren a la c茅lula la capacidad de moldear la conformacion de la cromatina, lo que permite la regulaci贸n de la expresi贸n g茅nica. Por tanto, un correcto funcionamiento de la regulaci贸n epigen茅tica de la c茅lula, es crucial para la adaptaci贸n celular a ambientes con cambios metab贸licos.
Los moduladores epigen茅ticos dependen de la disponibilidad meta\-b贸lica para poder modificar la epigen茅tica de la c茅lula. Estudios recientes han se帽alado que la acumulaci贸n de ciertos metabolitos es clave para que moduladores epigen茅ticos act煤en sobre las marcas de la cromatina. Un ejemplo claro se ve en los ritmos circadianos, donde los mecanismos epigen茅ticos median la relaci贸n que existe entre las oscilaciones metab贸licas y los cambios en expresi贸n g茅nica; la falta de mecanismos epigen茅ticos desconecta estos relojes moleculares, provocando enfermedades como en el caso del s铆ndrome metab贸lico. El estudio del control metab贸lico del epigenoma y el transcriptoma es un 谩rea de conocimiento emergente. Muchos estudios han generado informaci贸n a trav茅s de las tecnolog铆as de alto rendimiento, que miden la expresi贸n g茅nica, los metabolitos o las modificaciones de histonas entre otros tipos de moleculas para medir esta conexi贸n, y aunque se ha desarrollado mucha literatura al respecto, los mecanismos que ejercen la regulaci贸n de distintos tipos moleculares es todav铆a desconocida. Una necesidad en el 谩mbito de la bioinform谩tica es el an谩lisis integrativo de datos moleculares que propongan modelos de regulaci贸n detallados para conocer la relaci贸n entre metabolismo, cromatina y la transcripci贸n.
En este trabajo se ha aproximado la integraci贸n estad铆stica de meta\-bol贸mica y distintos datos epigen茅ticos con la expresi贸n g茅nica. Hemos realizado estos an谩lisis integrativos en el sistema modelo del ciclo metab贸lico de la levadura (YMC), en el cual la expresi贸n g茅nica se coordina con cambios en modificaciones de histonas y oscilaciones metab贸licas. Primero analizamos el impacto de las modificaciones de histonas sobre la expresi贸n g茅nica, lo cual nos permiti贸 identificar las marcas de histonas que coordinan los cambios en expresi贸n. Despu茅s creamos un conjunto de datos multi贸mico obteniendo muestras de metabol贸mica y ATAC-seq en el YMC, e incorporamos un set de datos de NET-seq. Estos datos fueron usados para modelar el impacto de los cambios metab贸licos y de la cromatina en la expresi贸n g茅nica y, por primera vez en ritmos biol贸gicos, integramos los tres tipos de datos moleculares en un solo modelo usando PLS-Path Modelling, una estrategia multivariante que permite encontrar relaciones entre muchos conjuntos de datos multi dimensionales. Esta herramienta nos ha permitido conocer que la expresi贸n g茅nica en la fase oxidativa est谩 regulada principalmente por la marca de histona H3K9ac, y la acumulaci贸n de ATP en esta parte del ciclo sugiere una regulaci贸n de la cromatina activando la enzima dependiente de ATP INO80. El resultado de PLS-PM tambi茅n nos muestra que los derivados de la nicotinamida podr铆an afectar los niveles de H3K18ac en a fase RC del ciclo a trav茅s de la regulaci贸n de las sirtuinas, activando la respuesta de degradaci贸n de 谩cidos grasos. El aspartato tambi茅n se ha asociado a la regulaci贸n epigen茅tica de la fase RC, pero los mecanismos por los que esta asociaci贸n novedosa tienen lugar son a煤n desconocidos.
Finalmente, hemos creado Padhoc, una herramienta computacional capaz de combinar el conocimiento existente en nuevos 谩mbitos de investigaci贸n -como el de este trabajo- para proponer modelos de redes metab贸licas que compleneten el conocimiento de las bases de datos actuales.
Esta tesis recopila la extracci贸n de un conjunto de datos multi贸micos que cubre metabolismo, epigen茅tica y expresi贸n g茅nica, as铆 como su an谩lisis integrativo usando estrategias multivariantes novedosas que modelan la coordinaci贸n de las distintas mol茅culas estudiadas. Adem谩s, incluimos una herramienta para la reconstrucci贸n de redes biol贸gicas. En conjunto, esta tesis presenta distintas herramientas para estudiar el impacto metab贸lico en la expresi贸n g茅nica usando la biolog铆a computacional.Cellular adaptation to changing environments constitutes a critical mechanism for cell survival. Cells primarily respond to external conditions by modulating the molecular mechanisms that regulate gene expression or protein activity, granting a rapid response to external metabolic changes. Therefore, metabolic sensing constitutes an important step in cell adaptation, and epigenetics is now considered the mechanism that connects metabolic shifts with gene regulation. Epigenetic marks give cells the capability of shaping chromatin conformation, which in turn regulates gene expression. Consequently, the correct functioning of a cell's epigenetic program is critical for cellular adaptation to changing conditions.
Different epigenetic modifiers rely on metabolite availability to modify the cell's epigenetic landscape. Recent studies point towards the accumulation of key metabolites as the critical mechanism by which epigenetic modifiers modulate the chromatin marks. This can be appreciated in circadian rhythms, where epigenetic changes mediate the cross-talk between metabolic oscillations and gene expression. Deficiencies that disconnect this molecular regulation lead to diseases, such as metabolic syndrome. The study of the metabolic control of the epigenome and transcriptome is an emerging field of research. Multiple studies have generated large, high-throughput datasets that measure gene expression, metabolites and histone modifications, among others, to study these interconnections; although a wealth of literature is accumulating, the precise mechanisms of these multi-layered regulations are still to be fully elucidated. Also, a consensus pathway describing these processes cannot yet be found in any of the common biological pathway databases. One critical need in the field is the integrative analysis of existing molecular data to propose detailed regulatory models for the interplay between metabolism, chromatin state and transcription.
This thesis addresses the statistical integration of metabolomics and epigenetics measurements with gene expression. We approached this data analysis challenge using the Yeast Metabolic Cycle (YMC) as a model system. Gene expression at the YMC can be divided into three, well-defined phases where transcription is coordinated with histone modifications and metabolomics oscillations. First, we analyzed the impact of histone modifications on gene expression, which led to the identification of the histone marks that have a higher impact on gene expression changes. Next, we created a comprehensive, multi-layered, multi-omics dataset for this system by obtaining metabolomics and ATAC-Seq data of the YMC and incorporating an existing nascent transcription (NET-seq) dataset. Moreover, we modeled the impact of chromatin conformation and metabolic changes on gene expression, and created a regulatory model for gene expression, epigenetics and metabolomics by applying PLS Path Modeling, a multivariate strategy suitable for finding relationships across multiple high-dimensional datasets. To our knowledge, this is the first time that PLS-PM is used for the modelling of molecular regulatory layers. We found that gene expression in OX phase was mainly controlled by H3K9ac histone mark and ATP accumulation at this phase, suggesting INO80 ATP-dependent chromatin remodeling activity. We also found an enrichment of H3K18ac during RC phase, together with accumulation of nicotinamide and its derivatives, suggesting that sirtuins may regulate H3K18ac levels at RC to activate fatty acid oxidation response. Aspartate was also associated with RC phase epigenetic regulation, but the mechanisms by which this amino acid may control the epigenome are still unanswered.
Finally, in this work, we have also created Padhoc, a computational pipeline to integrate the existing published knowledge in emerging research fields -such as those studied in this thesis- to propose pathway models that can complement current pathway databases.
Altogether, this thesis involves the generation of a multi-omics dataset that covers metabolic, epigenetic and gene expression information, and their integrative analysis using novel multivariate strategies that model their mechanistic coordination. Moreover, it includes a framework for the reconstruction of biological pathways. All in all, we have presented different strategies by which to study the impact of metabolic changes in chromatin using computational biology approaches
Palmitate impairs circadian transcriptomics in muscle cells through histone modification of enhancers
Acknowledgements The authors are supported by grants from the Novo Nordisk Foundation (NNF14OC0011493 and NNF17OC0030088), EFSD/Novo Nordisk Foundation Future Leader Award (NNF21SA0072747), Swedish Diabetes Foundation (DIA2021-641 and DIA2021-645), Swedish Research Council (2015-00165 and 2018-02389), KID-funding (2-3591/2014), the Strategic Research Program in Diabetes at Karolinska Institutet (2009-1068), Marie Sk艂odowska-Curie Actions (European Commission, 675610 and 704978), and Novo Nordisk postdoctoral fellowship run in partnership with Karolinska Institutet. Additional support was received from the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (NNF18CC0034900).Peer reviewedPublisher PD
Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach
The Yeast Metabolic Cycle (YMC) is a model system in which levels of around 60% of the yeast transcripts cycle over time. The spatial and temporal resolution provided by the YMC has revealed that changes in the yeast metabolic landscape and chromatin status can be related to cycling gene expression. However, the interplay between histone modifications and transcription factor activity during the YMC is still poorly understood. Here we apply an innovative statistical approach to integrate chromatin state (ChIP-seq) and gene expression (RNA-seq) data to investigate the transcriptional control during the YMC. By using the multivariate regression models N-PLS (Partial Least Squares) and MORE (Multi-Omics REgulation) methodologies, we assessed the contribution of histone marks and transcription factors to the regulation of gene expression in the YMC. We found that H3K18ac and H3K9ac were the most important histone modifications, whereas Sfp1, Hfi1, Pip2, Mig2, and Yhp1 emerged as the most relevant transcription factors. A significant association in the co-regulation of gene expression was found between H3K18ac and the transcription factors Pip2 (involved in fatty acids metabolism), Xbp1 (cyclin implicated in the regulation of carbohydrate and amino acid metabolism), and Hfi1 (involved in the formation of the SAGA complex). These results evidence the crucial role of histone lysine acetylation levels in the regulation of gene expression in the YMC through the coordinated action of transcription factors and lysine acetyltransferases
Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells
Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis