7 research outputs found

    GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage

    Get PDF
    Altres ajuts: This work was supported by the Ministerio de Ciencia e Innovación (to LB); the Instituto de Salud Carlos III (to LB and to MBP); the Generalitat of Catalunya-Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat (to LB); the Fundacion Investigación Cardiovascular to LB, and the Spanish Society of Cardiology (SEC2015 to MBP).Aims Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. Methods Herein we report that GSK3β regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3β is a canonical Wnt pathway inhibitor. Using GSK3β inhibitors and inducing myocardial injury (MI) in Lrp5 mice model we show that GSK3β phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5 mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3β expression levels. Results These studies support a central role for GSK3β in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3β expression levels do not regulate heart damage

    Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium : systems biology study

    Get PDF
    Altres ajuts: This work was supported by the Spanish Cardiovascular Network of Cell Therapy (Red TerCel RD16/0011/018) and Ciber CV(CB16/11/00411) from the Instituto Salud Carlos III (to LB). Additional funding was received from Plan Nacional de Salud (PNS SAF2016-76819-R to LB, 2015-71653-R to GV) from the Spanish Ministry of Science and Innovation and FEDER funds; from Instituto de Salud Carlos III (CPII13/00012 to GA); and support from a grant from the Muy Ilustrísima Administración from the Hospital de la Santa Creu I Sant Pau (to MG). The authors thank Fundacion Jesus Serra, Barcelona for continuous support.Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users

    GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage

    No full text
    Altres ajuts: This work was supported by the Ministerio de Ciencia e Innovación (to LB); the Instituto de Salud Carlos III (to LB and to MBP); the Generalitat of Catalunya-Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat (to LB); the Fundacion Investigación Cardiovascular to LB, and the Spanish Society of Cardiology (SEC2015 to MBP).Aims Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. Methods Herein we report that GSK3β regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3β is a canonical Wnt pathway inhibitor. Using GSK3β inhibitors and inducing myocardial injury (MI) in Lrp5 mice model we show that GSK3β phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5 mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3β expression levels. Results These studies support a central role for GSK3β in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3β expression levels do not regulate heart damage

    Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium : systems biology study

    No full text
    Altres ajuts: This work was supported by the Spanish Cardiovascular Network of Cell Therapy (Red TerCel RD16/0011/018) and Ciber CV(CB16/11/00411) from the Instituto Salud Carlos III (to LB). Additional funding was received from Plan Nacional de Salud (PNS SAF2016-76819-R to LB, 2015-71653-R to GV) from the Spanish Ministry of Science and Innovation and FEDER funds; from Instituto de Salud Carlos III (CPII13/00012 to GA); and support from a grant from the Muy Ilustrísima Administración from the Hospital de la Santa Creu I Sant Pau (to MG). The authors thank Fundacion Jesus Serra, Barcelona for continuous support.Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users
    corecore