44 research outputs found

    The role of carbon from recycled carbonated metapelites in the origin of ultrapotassic igneous rocks in the Central Mediterranean

    Get PDF
    The Central Mediterranean region is one of the most important areas on Earth for studying subduction-related potassic and ultrapotassic magmatism, derived from partial melting of the metasomatised lithospheric mantle wedge. In this region, leucite-free (i.e., lamproite) and leucite-bearing (i.e., kamafugite, leucitite, and plagioleucitite) ultrapotassic rocks closely occur, in a time-related progression, linked to the evolution of both the mantle source and the regional tectonic regime. Time- and space-related magmatism migration followed the roll-back of the subducting slab and the anticlockwise drift of the Italian Peninsula. Leucite-free silica-rich lamproites are restricted to the early stage of magmatism and are associated with ultrapotassic shoshonites and high-K calc-alkaline volcanic rocks. Leucite-bearing (i.e., Roman Province) rocks are erupted consistently later than lamproite-like and associated shoshonitic rocks, with post-leucititic volcanism occurring in the late stage of volcanic activity with eruption of alkali-basaltic to latitic and trachytic rocks, often after major caldera-forming events. Present-day ultrapotassic volcanism is restricted to the Neapolitan area. Central Mediterranean potassic and ultrapotassic rocks are extremely enriched in incompatible trace elements with variable fractionation of Ta, Nb, and Ti in comparison to Th and large ion lithophile elements (LILE). They are also variably enriched in radiogenic Sr and Pb and unradiogenic Nd. The main geochemical and isotopic signatures are consistent with sediment recycling within the mantle wedge via subduction. A twofold metasomatism, induced by the recycle of pelitic sediments and dehydration of lawsonite-bearing schists generates the early metasomatic events that enriched the mantle wedge from which leucite-free ultrapotassic rocks (i.e., lamproite) were generated. Recycling of carbonate-rich pelites played an important role in the shift to silica-undersaturated ultrapotassic rocks (kalsilite- and leucite-bearing) of the classic ‘Roman province’

    Antimicrobial activity of different nanocellulose films embedded with thyme, cinnamon, and oregano essential oils for active packaging application on raspberries

    Get PDF
    The study focuses on the antimicrobial activity of nanocellulose films (NFC) embedded with thyme, cinnamon, and oregano essential oils for active packaging application. The activity against model pathogenic bacteria was first tested to obtain each oil's minimum inhibitory concentration (MIC). The tests showed that the surface area of the films and the quantity of essential oil strongly influenced the antimicrobial effect. Then, the different active packaging systems were tested directly on packed raspberries to study their actual commercial packaging conditions. Through 12 days of storage at 1 & DEG;C, it was observed that thyme and oregano essential oils were more effective in maintaining the firmness and reducing the weight loss of the fruits compared to cinnamon essential oil or the control; no significant effect was observed on the other quality parameters that were considered. The essential oils independently proved effective in preventing fungal growth. However, the combined impact of thyme+oregano (NAP_TO) demonstrated the best performance.COST ACTION 19124 CIRCULA-BILITYinfo:eu-repo/semantics/publishedVersio

    Petrogenesis of Mediterranean lamproites and associated rocks: the role of overprinted metasomatic events in the postcollisional lithospheric upper mantle

    Get PDF
    High-MgO lamproite and lamproite-like (i.e. lamprophyric) ultrapotassic rocks are recurrent in the Mediterranean and surrounding regions. They are associated in space and time with ultrapotassic shoshonites and high-K calc-alkaline rocks. This magmatism is linked with the geodynamic evolution of the westernmost sector of the Alpine–Himalayan collisional margin, which followed the closure of the Tethys Ocean. Subduc- tion-related lamproites, lamprophyres, shoshonites and high-K calc-alkaline suites were emplaced in the Medi- terranean region in the form of shallow level intrusions (e.g. plugs, dykes and laccoliths) and small volume lava flows, with very subordinate pyroclastic rocks, starting from the Oligocene, in the Western Alps (northern Italy), through the Late Miocene in Corsica (southern France) and in Murcia-Almeria (southeastern Spain), to the Plio- Pleistocene in Southern Tuscany and Northern Latium (central Italy), in the Balkan peninsula (Serbia and Mac- edonia) and in the Western Anatolia (Turkey). The ultrapotassic rocks are mostly lamprophyric, but olivine latitic lavas with a clear lamproitic affinity are also found, as well as dacitic to trachytic differentiated products. Lamp- roite-like rocks range from slightly silica under-saturated to silica over-saturated composition, have relatively low Al2O3, CaO and Na2O contents, resulting in plagioclase-free parageneses, and consist of abundant K-feldspar, phlogopite, diopsidic clinopyroxene and highly forsteritic olivine. Leucite is generally absent, and it is rarely found only in the groundmasses of Spanish lamproites. Mediterranean lamproites and associated rocks share an extreme enrichment in many incompatible trace elements and depletion in High Field Strength Elements and high, and positively correlated Th/La and Sm/La ratios. They have radiogenic Sr and unradiogenic Nd iso- tope compositions, high 207Pb over 206Pb and high time-integrated 232Th/238U. Their composition requires an originally depleted lithospheric mantle source metasomatized by at least two different agents: (1) a high Th/ La and Sm/La (i.e. SALATHO) component deriving from lawsonite-bearing, ancient crustal domains likely hosted in mélanges formed during the diachronous collision of the northward drifting continental slivers from Gondwana; (2) a K-rich component derived from a recent subduction and recycling of siliciclastic sediments. These metasomatic melts produced a lithospheric mantle source characterized by network of felsic and phlogo- pite-rich veins, respectively. Geothermal readjustment during post-collisional events induced progressive melt- ing of the different types of veins and the surrounding peridotite generating the entire compositional spectrum of the observed magmas. In this complex scenario, orogenic Mediterranean lamproites represent rocks that charac- terize areas that were affected by multiple Wilson cycles, as observed in the Alpine–Himalayan Realm

    Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers.

    Get PDF
    Abstract Exosomes-secreted microRNAs play an important role in metastatic spread. During this process breast cancer cells acquire the ability to transmigrate through blood vessels by inducing changes in the endothelial barrier. We focused on miR-939 that is predicted to target VE-cadherin, a component of adherens junction involved in vessel permeability. By in silico analysis miR-939 was found highly expressed in the basal-like tumor subtypes and in our cohort of 63 triple-negative breast cancers (TNBCs) its expression significantly interacted with lymph node status in predicting disease-free survival probability. We demonstrated, in vitro , that miR-939 directly targets VE-cadherin leading to an increase in HUVECs monolayer permeability. MDA-MB-231 cells transfected with a miR-939 mimic, released miR-939 in exosomes that, once internalized in endothelial cells, favored trans-endothelial migration of MDA-MB-231-GFP cells by the disruption of the endothelial barrier. Notably, when up taken in endothelial cells exosomes caused VE-cadherin down-regulation specifically through miR-939 as we demonstrated by inhibiting miR-939 expression in exosomes-releasing TNBC cells. Together, our data indentify an extracellular pro-tumorigenic role for tumor-derived, exosome-associated miR-939 that can explain its association with worse prognosis in TNBCs

    APPLICAZIONE DI SISTEMATICHE ISOTOPICHE NON TRADIZIONALI (98Mo/95Mo E 238U/235U) ALLO STUDIO DELLE SORGENTI MANTELLICHE DEL MAGMATISMO POTASSICO E ULTRAPOTASSICO DEL MEDITERRANEO OCCIDENTALE

    No full text
    EN: Application of non-traditional isotopic systematics (98Mo/95Mo and 238U/235U) to investigate the mantle source of Western Mediterranean potassic and ultrapotassic magmatism Candidate: MARTINA CASALINI Earth Science PhD, XVIII cycle, University of Pisa Advisor: Prof. Riccardo Avanzinelli (University of Florence) Co-Advisors: Prof. Simone Tommasini, Prof. Sandro Conticelli (University of Florence) Extended abstract Subduction zones are associated with the most active volcanoes and violent earthquakes worldwide and they also represent the primary settings where the oceanic crust and the material from the Earth’s surface (i.e., sediments) are subducted and recycled into the mantle. Understanding the processes involved first in the transport of sediments from the surface to mantle depths, and then in the modification of the overlying mantle wedge, is a fundamental issue in order to properly characterize the arc-related magmatic products and to provide constrains into the global cycle of some key elements (e.g., C) on the Earth. For this PhD project a set of magmatic subduction-related rocks and sediments from the central-western Mediterranean area were selected. This area is characterised by subduction-related volcanic rocks, covering a large compositional spectrum from ultrapotassic (i.e., lamproites, kamafugites and plagioleucitites) to sub-alkaline (from shoshonite to high-K calc-alkaline); the ultrapotassic terms show extreme trace element enrichment, having some of the most extreme geochemical and isotopic compositions of any other mantle-derived magmas. The geochemical and isotope compositions (e.g., radiogenic Sr, Nd and Pb isotopes) of the Italian magmas (both silica-oversaturated and undersaturated) suggest the dominant role of sediments recycled through subduction as metasomatic agent within their mantle sources. This makes the selected area an extremely suitable laboratory to study the processes of sediment recycling in the Earth’s mantle. The studied samples represent the temporal and spatial variability occurring among five different Italian magmatic regions from the Western Alps, through the Tuscan and the Roman magmatic provinces (both from Latian and Neapolitan districts), to the Lucanian province. In addition crustal sedimentary and metamorphic rocks were also investigated. Despite a large number of studies has focussed on the Italian magmatism in the last decades, several open questions concerning the processes involved in the origin of magmas and in the characterization of the mantle sources are still under debate. In this study we applied non-traditional and still unexplored stable isotope systematics (namely Molybdenum and Uranium) with the twofold aim of i) explore their potential as tracer for sediment recycling, and ii) provide new constraints in the processes involved in the genesis of Italian magmas. Molybdenum and Uranium stable isotopes have emerged in the last decades as important tools to reconstruct the paleo-redox conditions of the ocean, and considering their geochemical characteristics, they have been proved to be promising diagnostic tracers of surface material returned to the Earth’s interior. In order to assess the potential of these non-traditional stable isotopes as crust recycling tracers, high-precision isotopic analyses on a selection of Italian potassic and ultrapotassic rocks have been performed thanks to the collaboration with the School of Earth Sciences at the University of Bristol (UK). Both Mo and U assume conservative behaviour in the water column under oxidizing conditions, while become enriched in the sediments under suboxic to anoxic conditions (i.e., continental margins). This redox-sensitivity results in significant mass-dependent isotope fractionation compared to seawater values, and could be employed as tracer for recycling of subducted sediments through subduction zones. This study provides the first dataset based on subduction-related magmas for which the role of sediment-melts is predominant but also the first data ever performed on Italian magmas using these isotope systematics. Dealing with two newly conceived systematics, we compared our results with the only three studies focused on arc magmas available in literature. Mariana arc in particular represents an important term of comparison since it is the only magmatic arc ever measured both for Mo and U isotope compositions, before this study. As a whole, the Italian products display a total variation on Mo isotopes significantly larger and higher that that reported in literature for magmatic arcs, sometime evident also within the studied provinces. The magmas from LD-RMP, in particular, show the largest range in δ98Mo values within a single magmatic province, and alone exceed the total isotope variation reported so far for magmatic rocks, as well as reaching the highest δ98Mo measured. We suggest that the substantially heavy isotope signature of Italian magmas can be related i) to isotope fractionation processes occurring during sediment melting or ii) to an original characteristic of the subducted material then transferred to the magmas. The Italian sediments analysed revealed a considerable large range of isotope compositions, likely related to the redox condition at the time of deposition, which is consistent with most of the sediment-dominated Italian magmas (e.g., WA, TMP and LD-RMP). In particular, in order to obtain the isotopically heavy Mo signature of LD-RMP magmas we suggest the involvement of even minimal amount of anoxic sediments in addition to the sedimentary agent common to the other magmatic sources, thus allowing the use of Mo isotopes as tracer for deep recycling of organic C. The overall U isotope composition of potassic and ultrapotassic Italian magmas is mostly within the range of published data but still heavier with respect to Mariana arc lavas. ND-RMP magmas in particular display the largest and isotopically heaviest range in δ238U so far reported, which is coupled to the occurrence of 238U-excesses, requiring the involvement of a high-U component (fluid or melt) deriving from the subducted sediments. We suggest that both Mo and U are useful tracers for subduction-related processes and in particular for assessing the role of recycling of sediments. Even though they are not able to highlight differences in the detailed lithology of the sedimentary material involved, Mo isotopes can be suitable to recognize the occurrence of variably reduced material, while U isotopes can be used as compelling tracer to constraining the origin of the recycling components. IT: Applicazione di sistematiche isotopiche non tradizionali (98Mo/95Mo, 238U/235U) allo studio delle sorgenti mantelliche del magmatismo potassico e ultrapotassico del Mediterraneo Occidentale Candidata: MARTINA CASALINI Dottorato in Scienze della Terra, XVIII ciclo, Università di Pisa Relatore: Prof. Riccardo Avanzinelli (Università degli Studi di Firenze) Co-relatori: Prof. Simone Tommasini, Prof. Sandro Conticelli (Università degli Studi di Firenze) Riassunto esteso Sul nostro pianeta le aree più attive sia dal punto di vista vulcanico che sismico sono comunemente associate alle zone di subduzione. In questi ambienti la crosta oceanica con la relativa copertura sedimentaria di precipitazione e il materiale proveniente dallo smantellamento della superficie terrestre (sedimenti) vengono subdotti e riciclati nel mantello. La comprensione dei processi legati, in primo luogo, al trasporto dei sedimenti dalla superficie alle profondità mantelliche e, in secondo luogo, al metasomatismo del cuneo di mantello sovrastante, è di fondamentale importanza al fine di poter adeguatamente caratterizzare i prodotti magmatici dell’ambiente di arco e di incrementare le conoscenze sul ciclo terrestre di alcuni elementi chimici chiave (es., il C). Nel corso di questo studio è stata effettuata una selezione di campioni, sia di rocce magmatiche di ambiente di subduzione che di sedimenti, provenienti dalle aree centro-occidentali del Mediterraneo. Questa zona è caratterizzata dalla presenza di rocce magmatiche di arco che coprono un ampio spettro composizionale da ultrapotassiche (es., lamproiti, kamafiguti e plagioleucititi) a sub-alcaline (da shoshoniti a calc-alcaline alte in K). I termini ultrapotassici in particolare sono significativamente arricchiti in elementi in traccia, e hanno composizioni isotopiche (isotopi radiogenici di Sr, Nd e Pb) estreme rispetto ai magmi di derivazione mantellica. Tali peculiari composizioni geochimiche e isotopiche suggeriscono che i sedimenti riciclati attraverso la subduzione abbiano un ruolo dominante come agente metasomatico delle sorgenti mantelliche dei magmi italiani. Queste caratteristiche fanno dell’area Mediterranea un promettente laboratorio per incrementare le nostre conoscenze sui processi di riciclaggio dei sedimenti nel mantello terrestre. I campioni selezionati appartengono a cinque regioni magmatiche italiane e ben rappresentano la variabilità spaziale e temporale tipica del magmatismo Plio-Quaternario italiano: dalle Alpi Occidentali e dalle province magmatiche Toscana e Romana (distretti Laziale e Napoletano compresi) alla provincia Lucana. Oltre ai prodotti magmatici sono stati studiati anche dei campioni di rocce sedimentarie e metamorfiche di derivazione crostale. Nonostante il magmatismo italiano Plio-Quaternario sia stato oggetto di un elevato numero di studi, sono ancora diverse le questioni aperte riguardanti i processi coinvolti nell’origine dei magmi e nella caratterizzazione delle sorgenti mantelliche. In questo progetto si è scelto di applicare delle sistematiche isotopiche non tradizionali (Molibdeno e Uranio) su prodotti magmatici ben caratterizzati dal punto di vista geochimico e isotopico con il duplice scopo di i) esplorare il loro potenziale come traccianti durante il processo di riciclaggio dei sedimenti e ii) fornire dei nuovi vincoli ai processi coinvolti nella genesi dei magmi italiani. Studi recenti hanno impiegato gli isotopi stabili di Mo e U come strumento per la ricostruzione delle condizioni paleo-redox degli oceani, ed hanno anche contribuito a implementare le conoscenze sul loro comportamento geochimico. Le peculiari caratteristiche di questi elementi fanno sì che i loro isotopi possano rappresentare dei promettenti traccianti, diagnostici del riciclaggio di materiale superficiale all’interno della Terra. Al fine di testare il potenziale di queste sistematiche, sui campioni selezionati sono state eseguite delle analisi isotopiche di alta precisione grazie alla collaborazione con la School of Earth Sciences dell’Università di Bristol (Regno Unito). In condizioni ossidanti sia Mo che U assumono un comportamento conservativo nella colonna di acqua, mentre in condizioni da subossiche ad anossiche si arricchiscono all’interno dei sedimenti (come avviene ad esempio lungo i margini continentali). Una tale sensibilità al variare delle condizioni redox ha come risultato un significativo e rilevabile frazionamento isotopico (in funzione della massa) che può essere quindi utilizzato come tracciante del riciclaggio dei sedimenti subdotti. Questo studio ha prodotto il primo database a livello globale su magmi di ambiente di subduzione in cui il ruolo dei sedimenti risulta essere predominante, ma anche i primi dati su magmi italiani mai misurati prima con queste sistematiche. Trattando delle sistematiche isotopiche di nuova concezione, i risultati ottenuti nel corso di questo lavoro sono stati confrontati e discussi con quelli derivanti dalle uniche tre pubblicazioni esistenti sui magmi di arco. L’arco delle Marianne in particolare è da considerare un importante termine di paragone poiché rappresenta l’unico caso di studio nel quale sono state determinate contemporaneamente le composizioni isotopiche di Mo e U. In generale, i prodotti Italiani mostrano una variazione complessiva per gli isotopi del Mo significativamente ampia e maggiore rispetto a quella riportata in letteratura per i magmi di arco, talvolta evidente anche all’interno delle singole province studiate. I prodotti del LD-RMP, in particolare, mostrano il più ampio intervallo di valori di δ98Mo all’interno della singola provincia, e da soli superano la variazione isotopica ad oggi nota per le rocce magmatiche, raggiungendo i valori di δ98Mo più alti mai misurati. I risultati di questo lavoro suggeriscono che nei magmi italiani l’impronta sostanzialmente pesante degli isotopi del Mo possa essere correlata i) a processi di frazionamento isotopico che avvengono durante la fusione dei sedimenti o ii) ad una caratteristica originale del materiale subdotto che viene poi trasferita al magma. I sedimenti analizzati rivelano una composizione isotopica considerevolmente variabile, verosimilmente dovuta alle condizioni redox presenti nel momento della deposizione. Tale range è coerente con le composizioni isotopiche misurate per i magmi maggiormente dominati dai sedimenti (come WA, TMP e LD-RMP). Al fine di spiegare i valori anomali di δ98Mo misurati nei magmi del LD-RMP si propone che, in aggiunta all’agente sedimentario comune alle altre sorgenti magmatiche, siano state coinvolte quantità anche minime di sedimento anossico. Se tale scenario fosse confermato anche da altre evidenze, importanti sarebbero le implicazioni nell’uso degli isotopi del Mo come traccianti per il riciclaggio del C organico nelle profondità terrestri. La composizione isotopica di U complessiva per i magmi potassici e ultrapotassici italiani è in larga parte compresa nell’intervallo definito dai dati di letteratura, pur essendo più pesanti rispetto all’arco magmatico delle Marianne. I magmi del ND-RMP in particolare mostrano l’intervallo di δ238U più ampio e isotopicamente più pesante riportato fino ad oggi che, accoppiato con gli eccessi di 238U misurati in queste rocce, richiede il coinvolgimento di una componente ad alto contenuto di U (fluido o fuso) derivante dai sedimenti subdotti. Come conclusione generale si conferma l’utilità degli isotopi di Mo e U come traccianti dei processi relativi alla subduzione ed in particolare per il riciclaggio dei sedimenti. Sebbene lo studio delle loro composizioni isotopiche non riesca a discriminare l’esatta natura litologica del sedimento coinvolto, gli isotopi del Mo possono essere utilizzati per riconoscere il coinvolgimento di materiale variabilmente ridotto, mentre gli isotopi dell’U possono essere impiegati come tracciante per caratterizzare l’origine delle componenti riciclate
    corecore