1,042 research outputs found

    The infrared colors of the Sun

    Get PDF
    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHKs and WISE W1-4 systems are provided: (V - J) = 1.198, (V - H) = 1.484, (V - Ks ) = 1.560, (J - H) = 0.286, (J - Ks ) = 0.362, (H - Ks ) = 0.076, (V - W1) = 1.608, (V - W2) = 1.563, (V - W3) = 1.552, and (V - W4) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive , we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% ± 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks

    Resilient Distributed MPC Algorithm for Microgrid Energy Management under Uncertainties

    Get PDF
    This paper proposes a resilient distributed energy management algorithm able to cope with different types of faults in a DC microgrid system. A distributed optimization method allows to solve the energy management problem without sharing any private data with the network and reducing the computational cost for each agent, with respect to the centralised case. A distributed MPC scheme based on distributed optimization is used to cope with uncertainty that characterizes the microgrid operation. In order to be resilient to faults that limit the amount of power available to consumers, we propose to adaptively store an amount of power in the storage systems to support the loads. A soft constraint on the minimum energy stored in each battery is introduced for feasibility and to cope with persistent faults. The effectiveness of the method is proved by extensive simulation results considering faults on three types of components: renewable generator, distribution grid and communication network

    The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    Full text link
    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can be ruled out as valid explanations for this phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other formats -> Source" downloa

    The solar, exoplanet and cosmological lithium problems

    Full text link
    We review three Li problems. First, the Li problem in the Sun, for which some previous studies have argued that it may be Li-poor compared to other Suns. Second, we discuss the Li problem in planet hosting stars, which are claimed to be Li-poor when compared to field stars. Third, we discuss the cosmological Li problem, i.e. the discrepancy between the Li abundance in metal-poor stars (Spite plateau stars) and the predictions from standard Big Bang Nucleosynthesis. In all three cases we find that the "problems" are naturally explained by non-standard mixing in stars.Comment: Astrophysics and Space Science, in press. New version has one reference correcte

    Microwave-assisted preparation of multi principal element alloys by powder metallurgy approach

    Get PDF
    According to literature, the synthetic route to produce High entropy alloys (HEAs) should guarantee short alloying time, efficient cooling and capability to operate in controlled atmosphere. Such conditions can be achieved using high frequency electromagnetic fields, like microwave heating. In this work FeCoNiCrAl and FeCoNiCuAl, both equiatomic and reinforced by the 10% wt. of SiC were prepared by microwave assisted techniques. Results show that direct microwave heating of the powder precursors occurs, until the ignition conditions are reached. The temperature and duration of the microwave-assisted process result much lower than other conventional powder metallurgy routes, but at the cost of a higher residual porosity. Sample characterization confirmed that the powder metallurgy approach is suitable to retain the shape of the load imparted during forming by uniaxial pressing. The homogeneity of the samples resulted in being good in all cases, without the dendritic segregation typically occurring by liquid phase processing. © 2017 European Powder Metallurgy Association (EPMA

    The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    Full text link
    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio

    The vertical metallicity gradients of mono-age stellar populations in the Milky Way with the RAVE and Gaia data

    Get PDF
    We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution and Radial Velocity Experiment (RAVE) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. The metallicity at disc plane remains almost constant between 2 and 8 Gyr, and it becomes significantly lower for the 8 < t ≤ 11 Gyr population. The current analysis also reveals that the intrinsic dispersion in metallicity increases steadily with age.We discuss that our results are consistent with a scenario that (thin) disc stars formed from a flaring (thin) star-forming disc

    The vertical metallicity gradients of mono-age stellar populations in the Milky Way thin disk

    Get PDF
    We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. We also find that the intrinsic dispersion in metallicity increases steadily with age. Our results are consistent with a scenario that thin disk stars formed from a flaring thin star-forming disk
    corecore