6,406 research outputs found

    Status and prospects for BSM ( (N)MSSM) Higgs searches at the LHC

    Full text link
    Searches for Beyond the Standard Model Higgs processes in the context of Minimal Supersymmetric Standard Model and Next to MSSM are presented. The results are based on the first LHC run of pp collision data recorded by the ATLAS and CMS experiments at the CERN Large Hadron Collider at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of about 5 and 20 fb−1^{-1} respectively. Current searches constrain large parts of the parameter space. No evidence for BSM Higgs is found.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2-6 November 201

    La cultura del vi, influĂšncies a la nostra comarca

    Get PDF

    Stochastic resonance with weak monochromatic driving: gains above unity induced by high-frequency signals

    Get PDF
    We study the effects of a high-frequency (HF) signal on the response of a noisy bistable system to a low-frequency subthreshold sinusoidal signal. We show that, by conveniently choosing the ratio of the amplitude of the HF signal to its frequency, stochastic resonance gains greater than unity can be measured at the low-frequency value. Thus, the addition of the HF signal can entail an improvement in the detection of weak monochromatic signals. The results are explained in terms of an effective model and illustrated by means of numerical simulations.Comment: 5 pages, 2 figure

    Online physics-selection software in the ATLAS experiment at LHC

    Get PDF
    The purpose of this study is the specification, design and development of online selection algorithms, and associated framework, for the second-level trigger of the ATLAS experiment, and their evaluation on a large-scale prototype

    La potencialitat de la vinya al Baix VallĂšs

    Get PDF

    A generalized Chudley-Elliott vibration-jump model in activated atom surface diffusion

    Get PDF
    Here the authors provide a generalized Chudley-Elliott expression for activated atom surface diffusion which takes into account the coupling between both low-frequency vibrational motion (namely, the frustrated translational modes) and diffusion. This expression is derived within the Gaussian approximation framework for the intermediate scattering function at low coverage. Moreover, inelastic contributions (arising from creation and annihilation processes) to the full width at half maximum of the quasi-elastic peak are also obtained.Comment: (5 pages, 2 figures; revised version

    Checking the validity of truncating the cumulant hierarchy description of a small system

    Full text link
    We analyze the behavior of the first few cumulant in an array with a small number of coupled identical particles. Desai and Zwanzig (J. Stat. Phys., {\bf 19}, 1 (1978), p. 1) studied noisy arrays of nonlinear units with global coupling and derived an infinite hierarchy of differential equations for the cumulant moments. They focused on the behavior of infinite size systems using a strategy based on truncating the hierarchy. In this work we explore the reliability of such an approach to describe systems with a small number of elements. We carry out an extensive numerical analysis of the truncated hierarchy as well as numerical simulations of the full set of Langevin equations governing the dynamics. We find that the results provided by the truncated hierarchy for finite systems are at variance with those of the Langevin simulations for large regions of parameter space. The truncation of the hierarchy leads to a dependence on initial conditions and to the coexistence of states which are not consistent with the theoretical expectations based on the multidimensional linear Fokker-Planck equation for finite arrays

    Vacuum fluctuations and the conditional homodyne detection of squeezed light

    Full text link
    Conditional homodyne detection of quadrature squeezing is compared with standard nonconditional detection. Whereas the latter identifies nonclassicality in a quantitative way, as a reduction of the noise power below the shot noise level, conditional detection makes a qualitative distinction between vacuum state squeezing and squeezed classical noise. Implications of this comparison for the realistic interpretation of vacuum fluctuations (stochastic electrodynamics) are discussed.Comment: 14 pages, 7 figures, to appear in J. Opt. B: Quantum Semiclass. Op

    Nonlinear Stochastic Resonance with subthreshold rectangular pulses

    Full text link
    We analyze the phenomenon of nonlinear stochastic resonance (SR) in noisy bistable systems driven by pulsed time periodic forces. The driving force contains, within each period, two pulses of equal constant amplitude and duration but opposite signs. Each pulse starts every half-period and its duration is varied. For subthreshold amplitudes, we study the dependence of the output signal-to-noise ratio (SNR) and the SR gain on the noise strength and the relative duration of the pulses. We find that the SR gains can reach values larger than unity, with maximum values showing a nonmonotonic dependence on the duration of the pulses.Comment: 7 pages, 2 figure

    Gain in Stochastic Resonance: Precise Numerics versus Linear Response Theory beyond the Two-Mode Approximation

    Get PDF
    In the context of the phenomenon of Stochastic Resonance (SR) we study the correlation function, the signal-to-noise ratio (SNR) and the ratio of output over input SNR, i.e. the gain, which is associated to the nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These quantifiers for SR are evaluated using the techniques of Linear Response Theory (LRT) beyond the usually employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT description that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by Greenside and Helfand (detailed in the Appendix), to integrate the driven Langevin equation over a wide range of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation function to the SNR and the gain. As a main result we show for subthreshold driving that both, the correlation function and the SNR can deviate substantially from the predictions of LRT and yet, the gain can be either larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a small duty cycle. This latter result is in agreement with recent analogue simulation results by Gingl et al. in Refs. [18, 19].Comment: 22 pages, 5 eps figures, submitted to PR
    • 

    corecore