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In the context of the phenomenon ofstochastic resonance~SR!, we study the correlation function, the
signal-to-noise ratio~SNR!, and the ratio of output over input SNR, i.e., thegain, which is associated to the
nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These
quantifiers for SR are evaluated using the techniques of linear response theory~LRT! beyond the usually
employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT de-
scription that the gain can indeednot exceed unity. We implement an efficient algorithm, based on work by
Greenside and Helfand~detailed in the Appendix!, to integrate the driven Langevin equation over a wide range
of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical
solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an
accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation
function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation
function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either
larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear
regime which is characterized by weak noise and very slow multifrequencysubthresholdinput signals with a
small duty cycle. This latter result is in agreement with recent analog simulation results by Ginglet al. @ICNF
2001, edited by G. Bosman~World Scientific, Singapore, 2002!, pp. 545–548; Fluct. Noise Lett.1, L181
~2001!#.
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I. INTRODUCTION

Over the past 20 years or so, a large amount of work
been devoted to the study of the dynamics of noisy nonlin
systems driven by external periodic forces. One of the m
reasons for this interest is related to the phenomenon of
chastic resonance~SR! @1–5#, namely, the possibility of us
ing the concerted action of noise and nonlinearity to augm
selectively, for some parameter values, the output of the n
linear system with respect to what it would be for a line
system dynamics.

The two common quantifiers for stochastic resonance
the spectral amplification measure@2,6,7# and the signal-to-
noise ratio~SNR! @2,8#. They are defined in terms of th
Fourier components of the correlation function associate
the stochastic variable,x(t). Due to the periodicity of the
driving force, the stochastic processx(t) is explicitly nonsta-
tionary. Thus, the two-time function̂x(t1t)x(t)& depends
on both t and t. For very large values oft, this quantity is
periodic int with the period of the external driving. Thus, i
cycle average over one period oft yields a function of justt:
the correlation function,C(t). The analysis of its structure
reveals thatC(t) is the sum of two terms@2#: One term is
periodic int with the same period as the driving force and
is called the coherent part,Ccoh(t). The other term, the in-
coherent partCincoh(t), decays to zero fort→`. The SNR
of the output processx(t), denoted byRout , is defined as the
ratio of the amplitude of the Fourier mode of the coher
part at the driving frequency, and the power spectral den
1063-651X/2003/67~3!/036109~10!/$20.00 67 0361
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of the incoherent part taken also at the driving frequency.
definition,Rout is thus a dimensional quantity.

The SNR of an input signal,Rinp , containing the sum of
the external driving and the Gaussian white noise, can ea
be evaluated. A convenient dimensionless parameter, the
G, defined by the ratio ofRout over Rinp can then be intro-
duced. For the case that the Langevin dynamics is linearx
driven by additive white Gaussian noise, the output SNR
exactly the same as that of the input; that is, the gain assu
precisely the value unity. In a general nonlinear case, nei
the output SNR nor the gain can be evaluated exactly
analytical means. As a consequence, their evaluation ne
sarily requires approximate procedures.

It was pointed out previously that the gain of a noi
nonlinear dynamical system subject to subthreshold sig
cannot exceed 1@9,10#. This feature has been rationalize
using the ideas of linear response theory~LRT!, thought to
be valid for weak driving amplitudes and not too small no
strengths. It should be pointed out, however, that the valid
of LRT critically depends also on the value of the frequen
as has convincingly been demonstrated in recent wo
@11,12#.

In the context of LRT theory it has been pointed out
Ref. @9# that a corollary of LRT is that ‘‘for small amplitude
signals, the signal-to-noise ratio at the output of a syst
driven by a stationary Gaussian noise does not exceed th
the input, even if the system displays SR.’’ Moreover, in R
@10#, the authors state that for ‘‘small signal in a Gauss
noise background, it is a theorem that the SNR at the ou
©2003 The American Physical Society09-1
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of a nonlinear device must be less than or equal to the S
at the input.’’ On the other hand, studies onnondynamical
systems@13–16#, on dynamical systems driven by large am
plitude sinusoidal forces@17#, and on dynamical system
driven by pulsed~multifrequency! periodic forces with sub-
threshold amplitudes@18,19#, have reported gains larger tha
unity. Clearly, for this to occur, the stochastic system m
operate in a regime where LRT does not apply. It is theref
of interest to delineate carefully the limit of applicability o
the LRT description of the correlation function, the SNR, a
the gain of a nonlinear noisy driven system.

In this paper, we have tackled this challenge by carry
out a detailed numerical evaluation of the correlation fu
tion C(t) and its components,Ccoh(t) andCincoh(t), of the
SNR and the gain of a bistable noisy system which is driv
by time-periodic forces. The numerical predictions have b
compared with those provided by the LRT approximati
that accounts for the full spectrum of all relaxation mode

As it is well known, LRT requires the knowledge of th
system susceptibility, or alternatively, of the correlation fun
tion of the noisy system in the absence of driving,K(t)
@2,11,12,20–22#. None of these quantities are known exac
for nonlinear systems. For sufficiently small values of t
noise strength, suitable analytical approximations toK(t)
can been used@2,11,12,20,21#. On the other hand, for larg
values of the noise intensity, we have evaluatedK(t) from
the numerical solution of the Fokker-Planck equation us
an adaptation of the split operator technique of Feitet al.
@23#, as it has been detailed in Ref.@24#. In this paper, we
also present a detailed proof of the statement that wi
LRT, the gainG(LRT)<1, by use of the full spectral ap
proach; this proof differs from alternative attempts in Re
@9,10# which use additional restrictions such as a linear
sponse theory for the fluctuations themselves.

The ‘‘typical’’ procedure to evaluate the SNR involves th
Fourier analysis of a very long record of the stochastic
jectory, x(t). Using the fast Fourier transform~FFT! of the
record, the corresponding periodogram is constructed. T
are several drawbacks with this procedure. There are su
ties inherent to the interpretation and evaluation of the p
odogram ~see for instance the critical comments in R
@25#!. There are also major problems associated with the
that the power spectrum containsd peaks at the driving fre-
quency and its higher harmonics arising from the coher
part of the correlation function. The contribution of the inc
herent part at those frequencies is embedded in those p
and it is not a simple task to estimate the separate contr
tion to the peaks of the coherent and incoherent parts of
periodogram. The evaluation of the SNR gain require
good knowledge of both contributions, and any small erro
the estimation of the incoherent contribution yields unr
sonable values for the gain. Indeed, in our opinion, a m
better estimate would be obtained if the periodic part of
output signal were subtracted from the data before perfo
ing its FFT.

In this work, we propose such an alternative procedu
The Langevin equation is numerically integrated for a la
number of noise realizations. The time evolution of the c
relation function and its coherent part are directly evalua
03610
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from the numerical solution after averaging over the no
realizations. The incoherent part is obtained from the diff
ence Cincoh(t)5C(t)2Ccoh(t). As the definition of the
SNR involves the amplitude of the Fourier mode ofCcoh(t)
and the spectral density ofCincoh(t) just at the driving fre-
quency, the evaluation ofRout requires just two numerica
quadratures; that is, there is no need to construct the
spectrum.

The paper is organized as follows. In the following se
tion, we introduce the model and provide definitions of t
quantities of interest. In Sec. III, the main points of the LR
description of the correlation functions are detailed. We a
present in this section a different and straightforward pr
of the fact thatG(LRT)<1, based on the spectral properties
the Fokker-Planck operator, and its adjoint, in the absenc
driving. In Sec. IV, we present the numerical procedure u
to obtain the correlation function, the SNR, and the g
from the numerical solution of the Langevin equation. T
very efficient algorithm used in this work is summarized
the Appendix. The numerical results are compared with
predictions of LRT for a variety of parameters and two d
tinct types of driving forces: a monochromatic force and
periodic sequence of pulses. Finally, we present conclus
for the main findings of our work.

II. CORRELATION FUNCTION, SIGNAL-TO-NOISE
RATIO, AND GAIN

Let us consider a system characterized by a single de
of freedom,x, subject to the action of a zero average Gau
ian white noise witĥ j(t)j(s)&52Dd(t2s) and driven by
an external periodic signalF(t) with periodT. In the Lange-
vin description, its dynamics is generated by the equatio

ẋ~ t !52U8@x~ t !#1F~ t !1j~ t !. ~1!

The corresponding linear Fokker-Planck equation~FPE! for
the probability densityP(x,t) reads

]

]t
P~x,t !5L̂~ t !P~x,t !, ~2!

where

L̂~ t !5
]

]x FU8~x!2F~ t !1D
]

]xG . ~3!

In the expressions above,U8(x) represents the derivative o
the potentialU(x). The periodicity of the external driving
F(t) allows its Fourier series expansion in the harmonics
the fundamental frequencyV52p/T, i.e.,

F~ t !5 (
n51

`

@ f ncos~nVt !1gnsin~nVt !#, ~4!

with the Fourier coefficients,f n andgn , given by

f n5
2

T E
0

T

dt F~ t !cos~nVt !,
9-2
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gn5
2

T E
0

T

dt F~ t !sin~nVt !. ~5!

Here, we are assuming that the cycle average of the exte
driving over its period equals zero.

The two-time correlation function̂x(t1t)x(t)&` in the
limit t→` is given by

^x~ t1t!x~ t !&`5E
2`

`

dx8 x8P`~x8,t !

3E
2`

`

dx xP1u1~x,t1tux8,t !, ~6!

where P`(x,t) is the time-periodic, asymptotic long tim
solution of the FPE and the quantityP1u1(x,t1tux8,t) de-
notes the two-time conditional probability density that t
stochastic variable will have a value nearx at timet1t if its
value at timet was exactlyx8. It can been shown@2,7# that,
in the limit t→`, the two-time correlation function̂x(t
1t)x(t)&` becomes a periodic function oft with the period
of the external driving. Then, we define the one-time cor
lation functionC(t) as the average of the two-time correl
tion function over a period of the external driving, i.e.,

C~t!5
1

TE0

T

dt^x~ t1t!x~ t !&` . ~7!

The correlation functionC(t) can be written exactly as th
sum of two contributions: a coherent partCcoh(t), which is
periodic in t with period T, and an incoherent part whic
decays to 0 for larget. The coherent partCcoh(t) is given
by @2,7#

Ccoh~t!5
1

TE0

T

dt^x~ t1t!&`^x~ t !&` , ~8!

where ^x(t)&` is the average value evaluated with t
asymptotic form of the probability densityP`(x,t).

It is possible to carry out a formal analysis ofC(t) and its
coherent and incoherent components by making use of
spectral analysis of the Floquet operator associated with
Fokker-Planck dynamics. But an explicit evaluation of t
correlation function is generally impossible; thus, one has
rely on numerical results obtained from integrating either
Langevin or the FPE, or by use of approximate analyti
descriptions.

According to McNamara and Wiesenfeld@8#, the output
SNR is defined in terms of the Fourier transform of the c
herent and incoherent parts ofC(t). As the correlation func-
tion is even in time and we evaluate its time dependence
t>0, it is convenient to use its Fourier cosine transfor
defined as

C̃~v!5
2

pE0

`

dt C~t!cos~vt!,
03610
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C~t!5E
0

`

dv C̃~v!cos~vt!. ~9!

The value of the output SNR is then obtained from

Rout5

lim
e→01

E
V2e

V1e

dvC̃~v!

C̃incoh~V!
. ~10!

Note that this definition of the SNR differs by a factor 2
stemming from the same contribution atv52V, from the
definitions used in earlier works@2,7#. The periodicity of the
coherent part gives rise tod peaks in the spectrum. Thus, th
only contribution to the numerator in Eq.~10! stems from the
coherent part of the correlation function. The evaluation
the SNR requires the knowledge of the Fourier compone
of Ccoh(t) and Cincoh(t) at the fundamental frequency o
the driving force. Thus, rather than the entire Fourier sp
trum, just two well defined numerical quadratures a
needed. Namely,

Rout5
Qu

Ql
, ~11!

where

Qu5
2

TE0

T

dt Ccoh~t!cos~Vt! ~12!

and

Ql5
2

pEo

`

dt Cincoh~t!cos~Vt!. ~13!

The signal-to-noise ratio for an input signalF(t)1j(t) is
given by

Rinp5
p~ f 1

21g1
2!

4D
. ~14!

The so-called gain is defined as the ratio of the SNR of
output over the SNR of the input; namely,

G5
Rout

Rinp
. ~15!

III. LINEAR RESPONSE THEORY BEYOND
THE TWO-MODE APPROXIMATION

The linear response theory provides a general proced
to describe the correlation function in an approximate w
The basic quantity of LRT is the system response functi
x(t). It is related to the equilibrium time correlation functio
of the system in the absence of external driving,K(t), via
the fluctuation-dissipation theorem~FDT! @2,7,20,21#, i.e.,

x~ t !5H 0, t<0

2
1

D
K̇~ t !, t.0.

~16!

The equilibrium time correlation functionK(t) is defined as
9-3
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K~ t !5E
2`

`

dx8 x8P(eq)~x8!E
2`

`

dx xP1u1
(0)~x,tux8!, ~17!

where P(eq)(x) is the equilibrium distribution of the non
driven system,

P(eq)~x!5Ne2U(x)/D, ~18!

and P1u1
(0)(x,tux8) is the conditional probability density to

find, in the absence of driving, the variable nearx at timet, if
it was initially at exactlyx8. Here we are assuming that th
potentialU(x) is even inx, so that^x&eq50.

Within LRT, the long time average valuêx(t)&`
(LRT) is

given by

^x~ t !&`
(LRT)5E

0

`

dt x~t!F~ t2t!. ~19!

Insertion of the Fourier expansion Eq.~4! into Eq.~19! leads
to

^x~ t !&`
(LRT)5 (

n51

`

@Mn
(LRT)cos~nVt !1Nn

(LRT)sin~nVt !#,

~20!

where the coefficientsMn
(LRT) andNn

(LRT) are given by

Mn
(LRT)5 f nxn

(r )2gnxn
( i ) , Nn

(LRT)5 f nxn
( i )1gnxn

(r ) .
~21!

In these formulas, we have introduced the quantitiesxn
(r ) and

xn
( i ) defined as

xn
(r )5E

0

`

dt x~t!cos~nVt!, ~22!

xn
( i )5E

0

`

dt x~t!sin~nVt!. ~23!

The use of the FDT in the above expressions allows u
write immediately

xn
(r )5

^x2&eq2nVE
0

`

dt K~ t !sin~nVt !

D
, ~24!

xn
( i )5

nV

D E
0

`

dt K~ t !cos~nVt !. ~25!

It then follows from Eq.~8! that within LRT, the coheren
part of the correlation function is given by

Ccoh
(LRT)~t!5

1

2 (
n51

`

@~Mn
(LRT)!21~Nn

(LRT)!2#cos~nVt!.

~26!

As discussed in Refs.@2,7,20#, LRT amounts to keeping the
leading term in the perturbation treatment of the dynamics
the stochastic processx(t) in powers of the driving ampli-
03610
to

f

tude. Then, within the spirit of perturbation theory, the lea
ing term in the expansion of the incoherent part correspo
to the correlation function of the system in the absence
driving force, i.e.,Cincoh

(LRT)(t)5K(t).
Taking into account thatCcoh

(LRT)(t) is periodic in t, it
follows from Eqs.~9! and ~26! that

C̃coh
(LRT)~v!5

1

2 (
n51

`

@~Mn
(LRT)!21~Nn

(LRT)!2#

3@d~nV2v!1d~nV1v!#. ~27!

Thus, it follows from the definition of the SNR, Eq.~10!,
that, within LRT, we have

R(LRT)5
Qu

(LRT)

Ql
(LRT)

, ~28!

where

Qu
(LRT)5

1

2
@~M1

(LRT)!21~N1
(LRT)!2#

5
1

2
~ f 1

21g1
2!@~x1

(r )!21~x1
( i )!2#, ~29!

and

Ql
(LRT)5K̃~V!5

2Dx1
( i )

pV
, ~30!

with K̃(V) being the Fourier cosine transform ofK(t), de-
fined according to Eq.~9!. In arriving at Eqs.~28!–~30! we
have also used Eqs.~21!–~23! and ~25!.

Taking into account Eqs.~14!, ~15! and ~28!–~30!, one
readily finds that the gain within LRT is given by

G(LRT)5
Rout

(LRT)

Rinp
5

V@~x1
(r )!21~x1

( i )!2#

x1
( i )

. ~31!

This is a general expression forG(LRT) valid for any shape of
the periodic driving signal.

The last expression will allow us to show thatG(LRT) can,
indeed, not exceed unity. Although this assertion has b
discussed previously in Refs.@9,10#, we next will present a
detailed and hopefully very clear proof for this promine
assertion.

As shown in the Appendix of Ref.@2#, see also in Refs
@11,12#, the susceptibilityx(t) can be expressed as

x~ t !52 (
p51

`

e2lpt^0uxup&^pu
]

]x
u0&, ~32!

where up&5cp(x), ^pu5cp
†(x) and lp are the eigenfunc-

tions and eigenvalues of the FP operatorL̂0 associated to the
undriven dynamics and its adjoint,L̂0

† , i.e.,

L̂0cp~x!52lpcp~x!, L̂0
†cp

†~x!52lpcp
†~x!. ~33!
9-4
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Using the above representation of the susceptibility in E
~22! and ~23! with n51, we find

x1
(r )52 (

p51

`
lp

lp
21V2

^0uxup&^pu
]

]x
u0&

5 (
p51

`
lp

lp
21V2U^0uxup&^pu

]

]x
u0&U, ~34!

x1
( i )52 (

p51

`
V

lp
21V2

^0uxup&^pu
]

]x
u0&

5 (
p51

`
V

lp
21V2U^0uxup&^pu

]

]x
u0&U. ~35!

Here, we have used the inequality

^0uxup&^pu
]

]x
u0&<0, ~36!

which can be proved as follows. Multiplying the first equ
tion in Eq.~33! by x and carrying out an integration by part
one obtains

2lp^0uxup&5E
2`

`

dx xL̂0cp~x!

52E
2`

`

dx U8~x!c0~x!cp
†~x!

5DE
2`

`

dxcp
†~x!

]

]x
c0~x!5D^pu

]

]x
u0&,

~37!

where we have taken into account thatc0(x)5P(eq)(x) and
cp(x)5c0(x)cp

†(x), so thatc0
†(x)51. Therefore,̂ 0uxup&

3^pu]/]xu0&52lp(^0uxup&)2/D<0. Using in Eqs. ~34!
and ~35! the Cauchy-Schwarz inequality, we find

~x1
(r )!25F (

p51

` lpU^0uxup&^pu
]

]x
u0&U1/2

lp
21V2

3U^0uxup&^pu
]

]x
u0&U1/2G 2

< (
p51

` lp
2U^0uxup&^pu

]

]x
u0&U

~lp
21V2!2 (

q51

` U^0uxuq&^qu
]

]x
u0&U,
~38!
03610
s.

~x1
( i )!25F (

p51

` VU^0uxup&^pu
]

]x
u0&U1/2

lp
21V2

3U^0uxup&^pu
]

]x
u0&U1/2G 2

< (
p51

` V2U^0uxup&^pu
]

]x
u0&U

~lp
21V2!2 (

q51

` U^0uxuq&^qu
]

]x
u0&U.
~39!

Taking into account that ^0uxu0&50, the complete-
ness relation yields (q51

` u^0uxuq&^qu]/]xu0&u
52(q50

` ^0uxuq&^qu]/]xu0&52^0ux]/]xu0&51. Thus, by
adding Eq.~38! to Eq. ~39!, one obtains

~x1
(r )!21~x1

( i )!2< (
p51

` U^0uxup&^pu
]

]x
u0&U

lp
21V2

5
x1

( i )

V
. ~40!

Finally, inserting Eq.~40! into ~31!, we obtain the semina
inequality thatG(LRT)<1.

Put differently, the gain of a nonlinear system operating
a regime where LRT provides a valid description cann
reach values greater than 1. This result is valid forany pe-
riodic external driving. Notice that this finding does not pr
clude the possibility of obtaining values for the SNR ga
larger than unity when the conditions are such that the us
LRT is not sensible.

IV. NUMERICAL RESULTS

In this section, we will carry out the numerical evaluatio
of the different magnitudes defined above. Our goal is
compare the predictions of LRT with the results obtain
from the numerical solution of the Langevin equation, E
~1!. We will consider the dynamics in the bistable potent
U(x)52x2/21x4/4 driven by time-periodic forces.

The evaluation of the different magnitudes using LRT
quires the knowledge ofK(t) @cf. Eqs.~21!, ~26!, and~28!–
~31!#. For nonlinear problems, explicit expressions forK(t)
are unknown, but useful approximations have been prese
in the literature. For the bistable potential,U(x)52x2/2
1x4/4, Jung and Ha¨nggi @21# have used the two-mode ap
proximation. It is based on the existence of a large differe
in the time scales associated to interwell and intrawell m
tions, and it is expected to be valid for small values of t
noise strengthD. With this model, one finds

K~t!5g1e2l1t1g2e2at, ~41!

where@2#

l1'
A2

p
~12 3

2 D !exp@21/~4D !#, ~42!
9-5
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anda52. The weightsg1 andg2 can be obtained from the
moments of the equilibrium distribution in the absence
driving using the expressions

g25
l1^x

2&eq

l12a
1

^x2&eq2^x4&eq

l12a
, ~43!

g15^x2&eq2g2 . ~44!

To leading order in D, we can replacel1 by lK

5A2/pexp@21/(4D)#, g1'1 and g2'D/a. This is the
limit considered in Ref.@26#. In the results reported below
we have also considered values ofD so large that the two-
mode approximation becomes inadequate. Therefore,
correlation function in the absence of driving has been ev
ated numerically from the FPE in the absence of driv
following the procedure discussed in Ref.@24#.

The numerical evaluation of the correlation functionC(t)
and its coherent and incoherent parts proceeds as follo
Stochastic trajectoriesx( j )(t) are generated by numericall
integrating the Langevin equation for every realizationj of
the white noisej(t), starting from a given initial condition
x0. The numerical solution is based on the algorithm dev
oped by Greenside and Helfand@27,28#. The essence of the
algorithm is briefly sketched in the Appendix. After allowin
for a relaxation transient stage, we start recording the t
evolution of each random trajectory for many different tr
jectories. Then, we construct the two-time (t andt) correla-
tion function, i.e.,

^x~ t1t!x~ t !&`5
1

N (
j 51

N

x( j )~ t1t!x( j )~ t !, ~45!

as well as the product of the averages

^x~ t1t!&`^x~ t !&`5S 1

N (
j 51

N

x( j )~ t1t!D S 1

N (
j 51

N

x( j )~ t !D ,

~46!

whereN is the number of stochastic trajectories consider
The correlation functionC(t) and its coherent partCcoh(t)
are then obtained using their definitions in Eqs.~7! and ~8!,
performing the cycle average over one period oft. The dif-
ference between the values ofC(t) andCcoh(t) allows us to
obtain the values forCincoh(t). It is then straightforward to
evaluate the Fourier component ofCcoh(t) and the Fourier
transform ofCincoh(t) at the driving frequency by numerica
quadrature. With that information, the numerator and the
nominator for the output SNR@cf. Eqs.~11!–~13!#, as well as
the gain@cf. Eq. ~15!#, are obtained.

We shall analyze two different types of periodic drivin
forces. First, let us consider the well known situation with
monochromatic, single-frequency force,A cos(Vt), with am-
plitude strengthA and angular frequencyV @2#. In this case,
the formulas in Sec. III simplify considerably becausef 1
5A, while all the other Fourier components of the drivin
force vanish. The second case corresponds to a periodic f
with periodT, with a sequence of pulses of lengthtc,T/2,
namely,
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F~ t !5H A, 0<t,tc

2A,
T

2
<t,

T

2
1tc

0, otherwise.

~47!

In this case, we have

f 15
2A

p
sin~Vtc!, g15

2A

p
@12cos~Vtc!#, ~48!

whereV52p/T is the fundamental frequency. This force
characterized by its amplitude, its period, and its duty cyc
which is defined as 2tc /T. Recently, Ginglet al. @18,19#
have carried out analog simulations of systems that are
jected to wideband Gaussian noise and driving forces of
second type. They report values for the gain that grea
exceeds unity, for driving amplitudes below its thresho
value. If this is the case, then strong deviations from the L
should be observed as well.

A. Monochromatic driving

In Fig. 1, we depict the results obtained for a monoch
matic driving force with angular frequencyV50.1, noise
strengthD50.2, and several values of the amplitude. In t
deterministic dynamics (D50), an external periodic force
with the indicated frequency induces sustained oscillati
between the minima of the potential forA>Ath.0.419.
Note that this nonadiabatic frequency raises the thresh

FIG. 1. The dependence of several SR quantifiers vs the sq
of the driving amplitude,A2, given by LRT~solid line! and by the
numerical solution of the Langevin equation~circles!. In panels~a!
and ~b!, we plot, respectively, the numerator and denominator
pearing in the definition of output SNR, cf. Eqs.~11! and~28!. The
behaviors of the output SNR and the gain are depicted, respecti
in panels~c! and ~d!. The driving force is monochromatic with
frequencyV50.1 and the white noise strength is kept constan
the valueD50.2. In all panels, the vertical dashed line indicates
square of the value of the dynamical threshold amplitudeAth at the
angular driving frequencyV. In panel~d!, a dotted horizontal line
is drawn at the gain value of 1 as a guide to the eye.
9-6
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value for superthreshold driving beyond its adiabatic low
limit of Ath

(ad)5A4/27.0.3849. Thus, we will take this valu
as the amplitude threshold value at the frequencyV50.1. In
panel ~a!, we plot the numerators,Qu and Qu

(LRT) , of the
output SNR given by Eqs.~12! and ~29! vs A2. The solid
straight line represents the LRT result, while the circles c
respond to the numerical results. The graph reveals tha
amplitude strengthsA,0.1 the predictions of LRT match
well the numerical results, as can be expected. When
amplitude increases, the deviations of LRT from the prec
numerical results are large. LRT predicts a much larger a
plification of the output amplitude than the one obtained
merically. In panel~b!, we plot the denominators,Ql and
Ql

(LRT) , of the output SNR given by Eqs.~13! ~circles! and
~30! ~solid line! vs A2. In LRT, the denominator is indepen
dent of A. Once again, the predictions of LRT match t
numerical results forA,0.1. For larger values ofA, the
influence of the driving amplitude on the relaxation
Cincoh(t) is very strong and the numerical results for t
denominator are much smaller than the ones obtained w
LRT. It is then clear that LRT will yield a valid description o
the signal-to-noise ratio for small driving amplitudes only
depicted in panel~c!. We notice that the values ofRout pro-
vided by the numerics are larger than those ofRout

(LRT) . This
is so although linear response theory predicts larger spe
amplifications, see in Ref.@7#, of the average output tha
what really occurs. The modifications in the behavior of t
incoherent part of the correlation function with respect to
behavior in the absence of driving are more than enoug
compensate for the behavior of the numerators. In panel~d!,
we plot the gain vsA2. There exists an optimum value fo
the driver amplitude (A;0.8) at which the gain become
maximized. Nonetheless, the gain is always smaller t
unity. LRT requires thatG(LRT)<1. These strong deviation
of the predictions of LRT about the behavior of the tw
components of the correlation function with respect to
numerical results tell us that LRT cannot be invoked to
plain the fact that the gain is smaller than 1 for the range
parameter values considered in this figure; that is, a g
below 1 occurs here within the nonlinear regime.

In Figs. 2 and 3 we analyze the same quantities as in
1, but now for larger noise values,D50.6 andD51.0, re-
spectively. The most important difference with respect to
plots in Fig. 1 is that for these larger values of the noise,
gain canexceedunity for values of the amplitude well abov
its threshold value. This superthreshold feature has been
roborated already in Ref.@17#; a gain above 1 seemingl
does not occur for monochromatic subthreshold driving.

B. Pulsed, multichromatic periodic driving

Next, we proceed to consider the case of pulsed driv
forces. In Figs. 4 and 5, we compare the dependence o
output on the driving amplitude as given by the LRT a
proximation with the numerical precise results. The system
forced by a multifrequency driver with a periodT52p/0.1
.63 and a duty cycle of 10%. As in the case of a sing
frequency driving, the values of the different quantities o
tained from the numerics deviate significantly from the p
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dictions of LRT as the amplitude of the driver is increase
Nevertheless, perhaps the most relevant difference with
spect to the monochromatic case is that we again donot find
gains larger than 1 in the range of parameter values con
ered in these figures.

C. The case of strong nonlinearity

A particularly interesting situation arises in the anal
studies of pulsed driving forces with a verysmall fundamen-
tal frequency: in Refs.@18,19# Gingl et al. report gains that
significantly exceed the value 1 for a subthreshold, multif
quency driving force of very large periodT52p/0.0024
.2618 and a small duty cycle of 10%. This large gain
accompanied by a nonmonotonic behavior of the SNR w
the noise strengthD. Therefore, this situation must corre
spond to a very sensible discrepancy of the actual beha
with respect to the LRT predictions. We have carried o
detailed and careful numerics of the Langevin equation
this extreme regime for such a driving force with a su

FIG. 2. The same as in Fig. 1 but now forV50.1 and
D50.6.

FIG. 3. The same as in Fig. 1 but now forV50.1 and
D51.0.
9-7
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threshold amplitudeA50.35 and a noise strengthD50.02.
With the parameters considered, the problem becomes c
putationally very demanding indeed: this is so because of
very large period of the driving force. Moreover, in order
obtain reliable numerical results for the incoherent part of
correlation function a large number of stochastic trajecto
needs to be generated. Our findings are summarize
Table I.

To obtain a reliable convergence of the corresponding
quantifiers, at least up to 50 000 random trajectories nee
be considered. A smaller sampling size can induce se
errors, see in Table I. The main result is a numerically eva
atedgain of 8.62; in clear contrast, the result predicted
LRT is the very small value of 0.018; that is, LRT striking
fails, cf. in Table I for the corresponding values of SNR a
its constituents. The SNR value of the analog simulation
Refs.@18,19# carried out with a pulsed input signal with th
same characteristics as the one considered here, and w

FIG. 4. The same as in Fig. 1, for the case of a pulsed, driv
force with periodT.63, duty cycle 2tc /T50.1, cf. Eq.~47!, and a
noise strengthD50.6.

FIG. 5. The same as in Fig. 1 for a pulsed driving force w
period T.63, duty cycle 2tc /T50.1, cf. Eq. ~47!, and a noise
strengthD51.0.
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band Gaussian noise with a related strength roughly sim
to ours, yields an experimentally determined gain of ca.
cf. Fig. 4 in Ref.@19#. This value is again significantly large
than 1 and compares favorably with our results in Table
Note, however, that the sampling size of ca. 1000 reali
tions used in Refs.@18,19# has been chosen substantia
smaller than the number of realizations needed to ach
good numerical convergence, cf. Table I; this in turn m
explain the overshoot of the experimentally determined g
value.

V. CONCLUSIONS

Let us summarize the main results of this work.
~i! First, we have provided an analytical proof based

LRT beyond the commonly employed two-mode approxim
tion that thegain of a noisy, periodically driven nonlinea
system which operates within the regime of validity of LR
cannot exceed unity. This result holds for arbitrary no
strengthD and is independent of the shape of the input s
nal.

~ii ! We have implemented a very efficient algorithm d
to Greenside and Helfand@27,28# to numerically integrate
the Langevin equation. From the numerical solution,
have evaluated the time evolution of the correlation funct
and its coherent and incoherent components.

~iii ! We have also put forward a procedure, alternative
the usual one, to calculate the SNR. The numerator and
nominator of the SNR are calculated by use of only tw
numerical quadratures.

~iv! A detailed comparison between the predictions
LRT and the numerical results have been carried out.
have assessed regions of parameter values where LRT g
an erroneous description, yet the gain, nevertheless, is
than unity. On the other hand, there exist regions in para
eter space where the gain indeed exceeds 1 if driven wi
superthreshold amplitude strength; this finding is in agr
ment with prior results in Ref.@17#. These regions are agai
characterized by substantial deviations from LRT.

Moreover, as previously established by use of ana
simulations by Ginglet al. @18,19# we also find the surpris-
ing result,valid for dynamical systems, that SNR gains larger
than unity can indeed occur for subthreshold multichroma
input signals: For this feature to occur one seemingly nee
however, weak noise and a slow periodic driving signal w
a very small duty cycle. In this context, the necessity o
sufficiently large number of sampling trajectories in order
obtain reliable, convergent results has also been stressed

TABLE I. Numerically obtained values of several quantities f
different numbers of noise realizations and their LRT results.

Trajectories Qu Ql Rout G

Numerics 1000 0.78 0.33 2.32 12.16
5000 0.78 0.35 2.26 11.84
10000 0.78 0.47 1.67 8.77
50000 0.78 0.48 1.65 8.62

LRT 0.00061 0.177 0.0034 0.018

g

9-8
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in this very regime of small frequency driving and we
noise where the LRT description indeed fails notably@11,12#.
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APPENDIX: THE METHOD OF GREENSIDE
AND HELFAND

The procedure proposed by Greenside and Helfand
numerically integrating stochastic differential equations h
been discussed in detail by them in Refs.@27,28#. For the
sake of completeness, we will briefly sketch in this appen
the main reasoning of their procedure. By analogy with
terministic Runge-Kutta algorithms, Greenside and Helfa
developed schemes to estimate the value of the stoch
variable at timet1h if its value at timet is known. This is
achieved by evaluating the right hand side of the Lange
equation at selected points within each interval of lengthh,
so that all moments ofx(t1h)2x(t) are correct to orderhk.

As our Langevin equation contains an explicit time d
pendent driving force, it is convenient to rewrite it as a tw
dimensional problem with variables (y1 ,y2)5yW , where y1
5x andy25t. The Langevin equation, Eq.~1!, is then writ-
ten in vector form as

dyW

dt
5GW ~yW !1JW ~ t !, ~A1!

where GW 5 (G1 , G2) 5 „2U8(x) 1 F(t), 1… and JW (t)
5„j(t),0….

The formal solution of Eq.~A1! yields

yk~h!5yk~0!1E
0

h

dsGk„yW ~s!…s1wk
(0)~h! ~k51,2!

~A2!

with

wk
(0)~h!5E

0

h

dsJk~s!. ~A3!

The right hand side of Eq.~A2! can be expanded as

yk~h!5yk~0!1hGk„yW ~0!…1
1

2
h2(

m

]Gk„yW ~0!…

]ym
Gm„yW ~0!…

1•••1Sk~h!. ~A4!

The last termSk(h) represents the stochastic part. It is
series inh1/2 with the order of the terms determined in pro
ability.
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By analogy with the Runge-Kutta procedures for det
ministic differential equations, Greenside and Helfand p
pose anl-stage algorithm to write the solution of Eq.~A1! as

yk~h!5yk~0!1h~A1g1k1•••1Alglk!1h1/2Jk
1/2Y0k ,

~A5!

with

g1k5Gk„$ym~0!1h1/2Jm
1/2Y1m%…,

g2k5Gk„$ym~0!1hb21g1m1h1/2Jm
1/2Y2m%…,

A

glk5Gk„$ym~0!1hb l1g1m1•••1hb l ,l 21gl 21,m

1h1/2Jm
1/2Ylm%…. ~A6!

Here, ($ym%) is the set (x,t). TheYlm are Gaussian stochas
tic variables with zero average, which are numerically ge
erated by writing

Yik5(
j 51

m

l i j Zj k , ~A7!

whereZj k arem independent Gaussian random variables
zero average and unit variance. The parametersAi , b i j , and
l i j appearing in Eqs.~A5!–~A7! are independent of the com
ponent indexk. They are obtained by expanding Eq.~A5! to
the desired orderhk. This expansion gives rise to a determi
istic and a stochastic part,S̃k . Equating the coefficients o
this expansion with those of the deterministic part in E
~A4! leads to a set of equations for the parametersAi , b i j ,
andl i j . Further equations are obtained by equating the m
ments of^S̃k

n& with those of the stochastic part in the expa
sion in Eq.~A4! ^Sk

n&.
A procedure correct to orderhk in the step sizeh, involv-

ing l stages andm Gaussian independent variables, is term
a kOl SmG algorithm. In this paper, we have integrated t
Langevin equation using a 3O4S2G algorithm with the values
for Ai , b i j , andl i j given in Table II taken from Ref.@28#.
With this choice of parameters, the deterministic part is
order h4, as in the fourth-order Runge-Kutta procedure f
ordinary differential equations.

TABLE II. Parameter values given by Greenside and Helfa
@28# for their 3O4S2G algorithm.

A1 0.0 A2 0.644468
A3 0.194450 A4 0.161082
b21 0.516719 b31 20.397300
b32 0.427690 b41 21.587731
b42 1.417263 b43 1.170469
l01 1.0 l02 0.0
l11 0.0 l12 0.271608
l21 0.516719 l22 0.499720
l31 0.030390 l32 20.171658
l41 1.0 l42 0.0
9-9
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