5,652 research outputs found

    Vacuum fluctuations and the conditional homodyne detection of squeezed light

    Full text link
    Conditional homodyne detection of quadrature squeezing is compared with standard nonconditional detection. Whereas the latter identifies nonclassicality in a quantitative way, as a reduction of the noise power below the shot noise level, conditional detection makes a qualitative distinction between vacuum state squeezing and squeezed classical noise. Implications of this comparison for the realistic interpretation of vacuum fluctuations (stochastic electrodynamics) are discussed.Comment: 14 pages, 7 figures, to appear in J. Opt. B: Quantum Semiclass. Op

    An intrinsic Proper Generalized Decomposition for parametric symmetric elliptic problems

    Full text link
    We introduce in this paper a technique for the reduced order approximation of parametric symmetric elliptic partial differential equations. For any given dimension, we prove the existence of an optimal subspace of at most that dimension which realizes the best approximation in mean of the error with respect to the parameter in the quadratic norm associated to the elliptic operator, between the exact solution and the Galerkin solution calculated on the subspace. This is analogous to the best approximation property of the Proper Orthogonal Decomposition (POD) subspaces, excepting that in our case the norm is parameter-depending, and then the POD optimal sub-spaces cannot be characterized by means of a spectral problem. We apply a deflation technique to build a series of approximating solutions on finite-dimensional optimal subspaces, directly in the on-line step. We prove that the partial sums converge to the continuous solutions, in mean quadratic elliptic norm.Comment: 18 page

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Linking tourism, retirement migration and social capital

    Get PDF
    A general trend in the study of international retirement migration has been the increased attention paid to the social contacts and network connections of the migrants in both the destination and the origin areas. These studies have examined the extent to which migrants build social relationships with their neighbours and the host society while also maintaining social links with their countries of origin, addressing the central role that leisure travel plays in sustaining increasingly dispersed social networks and maintaining the social capital of these networks and of the individuals involved in them. Using a case study approach to examine British retirement migration to Spain, we explore the relevance of transnational social networks in the context of international retirement migration, particularly the intensity of bidirectional visiting friends and relatives (VFR) tourism flows and the migrants' social contacts with friends and/or family back in their home country. Building on the concept of social capital and Putnam's distinction between bonding and bridging social capital, we propose a framework for the analysis of the migrants' international social networks. The results of a study conducted based on a sample of 365 British retirees living in the coast of Alicante (Spain) show both the strength of the retirees' international bonding social capital and the role of 'VFR's travel and communication technologies in sustaining the migrants' transnational social practices and, ultimately, their international bonding social capital. It also provides evidence for the reinforcing links between tourism-related mobility and amenity-seeking migration in later life. © 2013 © 2013 Taylor & Francis

    Dynamics of an inhomogeneous quantum phase transition

    Full text link
    We argue that in a second order quantum phase transition driven by an inhomogeneous quench density of quasiparticle excitations is suppressed when velocity at which a critical point propagates across a system falls below a threshold velocity equal to the Kibble-Zurek correlation length times the energy gap at freeze-out divided by â„Ź\hbar. This general prediction is supported by an analytic solution in the quantum Ising chain. Our results suggest, in particular, that adiabatic quantum computers can be made more adiabatic when operated in an "inhomogeneous" way.Comment: 7 pages; version to appear in a special issue of New J. Phy

    Escape from a metastable well under a time-ramped force

    Full text link
    Thermally activated escape of an over-damped particle from a metastable well under the action of a time-ramped force is studied. We express the mean first passage time (MFPT) as the solution to a partial differential equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can provide a valuable first estimate.Comment: 9 pages, including 2 figure

    Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

    Get PDF
    The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas combustor designed to operate at 40–80 kW and atmospheric pressure and used to study combustion instabilities. The transient simulation of a turbulent combusting flow with the purpose to study thermoacoustic instabilities is a very time-consuming process. For that reason, the meshing approach leading to accurate numerical prediction, known sensitivity, and minimized amount of mesh elements is important. Since the numerical dissipation (and dispersion) is highly dependent on, and affected by, the geometrical mesh quality, it is of high importance to control the mesh distribution and element size across the computational domain. Typically, the structural mesh topology allows using much fewer grid elements compared to the unstructured grid; however, an unstructured mesh is favorable for flows in complex geometries. To explore computational stability and accuracy, the numerical dissipation of the cold flow with mixing of fuel and air is studied first in the absence of the combustion process. Thereafter, the studies are extended to combustible flows using standard available ansys-cfx combustion models. To validate the predicted variable fields of the combustor's transient reactive flows, the numerical results for dynamic pressure and temperature variations, resolved under structured and unstructured mesh conditions, are compared with experimental data. The obtained results show minor dependence on the used mesh in the velocity and pressure profiles of the investigated grids under nonreacting conditions. More significant differences are observed in the mixing behavior of air and fuel flows. Here, the numerical dissipation of the (unstructured) tetrahedral mesh topology is higher than in the case of the (structured) hexahedral mesh. For that reason, the combusting flow, resolved with the use of the hexahedral mesh, presents better agreement with experimental data and demands less computational effort. Finally, in the paper, the performance of the combustion model for reacting flow is presented and the main issues of the applied combustion modeling are reviewe
    • …
    corecore