7 research outputs found

    Strong selection and high mutation supply characterize experimental Chlorovirus evolution

    Get PDF
    Characterizing how viruses evolve expands our understanding of the underlying fundamental processes, such as mutation, selection and drift. One group of viruses whose evolution has not yet been extensively studied is the Phycodnaviridae, a globally abundant family of aquatic large double-stranded (ds)DNA (dsDNA) viruses. Here we studied the evolutionary change of Paramecium bursaria chlorella virus 1 during experimental coevolution with its algal host. We used pooled genome sequencing of six independently evolved populations to characterize genomic change over five time points. Across six experimental replicates involving either strong or weak demographic fluctuations, we found single nucleotide polymorphisms (SNPs) at sixty-seven sites. The occurrence of genetic variants was highly repeatable, with just two of the SNPs found in only a single experimental replicate. Three genes A122/123R, A140/145R and A540L showed an excess of variable sites, providing new information about potential targets of selection during Chlorella–Chlorovirus coevolution. Our data indicated that the studied populations were not mutation-limited and experienced strong positive selection. Our investigation highlighted relevant processes governing the evolution of aquatic large dsDNA viruses, which ultimately contributes to a better understanding of the functioning of natural aquatic ecosystems

    Genotoxicity and mutagenicity of Echinodorus macrophyllus (chapéu-de-couro) extracts

    Get PDF
    Echinodorus macrophyllus, commonly known as chapéu-de-couro, is a medicinal plant used in folk medicine to treat inflammation and rheumatic diseases. In this work, we used short-term bacterial assays based on the induction of SOS functions to examine the genotoxicity and mutagenicity of an aqueous extract of E. macrophyllus leaves. Whole extract and an ethyl acetate fraction showed similar genotoxicity and caused an ~70-fold increase in lysogenic induction. The extract also gave a positive result in the SOS chromotest with an increase of 12-fold in β-Galactosidase enzymatic units. There was a strong trend towards base substitutions and frameshifts at purine sites in the mutations induced by the extract in Escherichia coli (CC103 and CC104 strains) and Salmonella typhimurium test strains (22-fold increase in histidine revertants in TA98 strain). Since reactive oxygen species may be implicated in aging process and in degenerative diseases, we used antioxidant compounds as catalase, thiourea and dipyridyl in the lysogenic induction test. All this compounds were able to reduce the induction factor observed in the treatment with chapéu-de-couro, thus suggesting that the genotoxicity and mutagenicity were attributable to the production of reactive oxygen species that targeted DNA purines

    Ecological and Evolutionary Processes Shaping Viral Genetic Diversity

    Get PDF
    The contemporary genomic diversity of viruses is a result of the continuous and dynamic interaction of past ecological and evolutionary processes. Thus, genome sequences of viruses can be a valuable source of information about these processes. In this review, we first describe the relevant processes shaping viral genomic variation, with a focus on the role of host–virus coevolution and its potential to give rise to eco-evolutionary feedback loops. We further give a brief overview of available methodology designed to extract information about these processes from genomic data. Short generation times and small genomes make viruses ideal model systems to study the joint effect of complex coevolutionary and eco-evolutionary interactions on genetic evolution. This complexity, together with the diverse array of lifetime and reproductive strategies in viruses ask for extensions of existing inference methods, for example by integrating multiple information sources. Such integration can broaden the applicability of genetic inference methods and thus further improve our understanding of the role viruses play in biological communities

    Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets

    Get PDF
    Technological advances in DNA sequencing over the last decade now permit the production and curation of large genomic datasets in an increasing number of non-model species. Additionally, this new data provides the opportunity for combining datasets, resulting in larger studies with a broader taxonomic range. Whilst the development of new sequencing platforms has been beneficial, resulting in a higher throughput of data at a lower per-base cost, shifts in sequencing technology can also pose challenges for those wishing to combine new sequencing data with data sequenced on older platforms. Here, we outline the types of studies where the use of curated data might be beneficial, and highlight potential biases that might be introduced by combining data from different sequencing platforms. As an example of the challenges associated with combining data across sequencing platforms, we focus on the impact of the shift in Illumina’s base calling technology from a four-channel to a two-channel system. We caution that when data is combined from these two systems, erroneous guanine base calls that result from the two channel chemistry can make their way through a bioinformatic pipeline, eventually leading to inaccurate and potentially misleading conclusions. We also suggest solutions for dealing with such potential artifacts, which make samples sequenced on different sequencing platforms appear more differentiated from one another than they really are. Finally, we stress the importance of archiving tissue samples and the associated sequences for the continued reproducibility and reusability of sequencing data in the face of ever-changing sequencing platform technology

    Demographic fluctuations and selection during host-parasite coevolution interactively increase genetic diversity.

    No full text
    Host-parasite interactions can cause strong demographic fluctuations accompanied by selective sweeps of resistance/infectivity alleles. Both demographic bottlenecks and frequent sweeps are expected to reduce the amount of segregating genetic variation and therefore might constrain adaptation during coevolution. Recent studies, however, suggest that the interaction of demographic and selective processes is a key component of coevolutionary dynamics and may rather positively affect levels of genetic diversity available for adaptation. Here, we provide direct experimental testing of this hypothesis by disentangling the effect of demography, selection, and of their interaction in an experimental host-parasite system. We grew 12 populations of a unicellular, asexually reproducing algae (Chlorella variabilis) that experienced either growth followed by constant population sizes (3 populations), demographic fluctuations (3 populations), selection induced by exposure to a virus (3 populations), or demographic fluctuations together with virus-induced selection (3 populations). After 50 days (approximately 50 generations), we conducted whole-genome sequencing of each algal host population. We observed more genetic diversity in populations that jointly experienced selection and demographic fluctuations than in populations where these processes were experimentally separated. In addition, in those 3 populations that jointly experienced selection and demographic fluctuations, experimentally measured diversity exceeds expected values of diversity that account for the cultures' population sizes. Our results suggest that eco-evolutionary feedbacks can positively affect genetic diversity and provide the necessary empirical measures to guide further improvements of theoretical models of adaptation during host-parasite coevolution
    corecore