37 research outputs found

    Molecular Targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the Zebrafish Ovary: Insights into TCDD-induced Endocrine Disruption and Reproductive Toxicity

    Get PDF
    TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD\u27s reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated signal transduction may also contribute to TCDD\u27s impacts on follicular development. TCDD may also alter ovarian function by disrupting various signaling pathways such as glucose and lipid metabolism, and regulation of transcription. Furthermore, events downstream from initial TCDD molecular-targets likely contribute to ovarian toxicity following chronic exposure to TCDD. Data presented here provide further insight into the mechanisms by which TCDD disrupts follicular development and reproduction in fish, and can be used to formulate new hypotheses regarding previously documented ovarian toxicity

    Developmental Methylmercury Exposure affects Avoidance Learning Outcomes in Adult Zebrafish

    Get PDF
    The present study investigated the neurobehavioral effects of embryonic exposure to methylmercury (MeHg) in zebrafish using avoidance conditioning as the behavioral paradigm. In this study, adult zebrafish developmentally exposed as embryos to 0.00, 0.01, 0.03, 0.1, or 0.3 µM of MeHg were trained and tested for avoidance responses. The results showed that control zebrafish hatched from embryos unexposed to MeHg learned avoidance responses during training and showed significantly increased avoidance responses during testing. Zebrafish developmentally exposed to MeHg as embryos were hyperactive as they frequently swam back and forth, and showed no significant changes in avoidance responses from training to testing. Results of the present study suggested that embryonic methylmercury exposure produced hyperactivity and impaired avoidance learning

    Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch (Perca flavescens) Larvae

    Get PDF
    Methylmercury (MeHg) is a pervasive and ubiquitous environmental neurotoxicant within aquatic ecosystems, known to alter behavior in fish and other vertebrates. This study sought to assess the behavioral effects of developmental MeHg exposure on larval yellow perch (Perca flavescens)--a nonmodel fish species native to the Great Lakes. Embryos were exposed to MeHg (0, 30, 100, 300, and 1000 nM) for 20 h and then reared to 25 days post fertilization (dpf) for analyses of spontaneous swimming, visual motor response (VMR), and foraging efficiency. MeHg exposures rendered total mercury (THg) body burdens of 0.02, 0.21, 0.95, 3.14, and 14.93 μg/g (wet weight). Organisms exposed to 1000 nM exhibited high mortality; thus, they were excluded from downstream behavioral analyses. All MeHg exposures tested were associated with a reduction in spontaneous swimming at 17 and 25 dpf. Exposure to 30 and 100 nM MeHg caused altered locomotor output during the VMR assay at 21 dpf, whereas exposure to 100 nM MeHg was associated with decreased foraging efficiency at 25 dpf. For the sake of comparison, the secondlowest exposure tested here rendered a THg burden that represents the permissible level of consumable fish in the United States. Moreover, this dose is reported in roughly two-thirds of consumable fish species monitored in the United States, according to the Food and Drug Administration. Although the THg body burdens reported here were higher than expected in the environment, our study is the first to analyze the effects of MeHg exposure on fundamental survival behaviors of yellow perch larvae and advances in the exploration of the ecological relevance of behavioral end points

    Veterans and Agent Orange: Update 11 (2018) (2018)

    Get PDF
    Contents ACRONYMS AND ABBREVIATIONS xvii SUMMARY 1 1 INTRODUCTION 17 Previous Veterans and Agent Orange Reports, 18 Charge to the Committee, 19 Information Gathering, 20 Organization of the Report, 21 2 BACKGROUND 25 The Current Population of Vietnam Veterans,25 Military Use of Herbicides in Vietnam, 27 Exposure of Different Groups of Vietnam Veterans, 30 Characterizing Exposure, 38 Determining Increased Risk in Vietnam Veterans, 4

    Comparison of Neurobehavioral Effects of Methylmercury Exposure in Older and Younger Adult zebrafish (\u3ci\u3eDanio rerio\u3c/i\u3e)

    Get PDF
    It is widely recognized that the nature and severity of responses to toxic exposure are age-dependent. Using active avoidance conditioning as the behavioral paradigm, the present study examined the effect of short-term methylmercury (MeHg) exposure on two adult age classes, 1- and 2-year-olds to coincide with zebrafish in relatively peak vs. declining health conditions. In Experiment 1, 2-year-old zebrafish were randomly divided into groups and were exposed to no MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1, or 0.3 mM of MeHg (in 0.15% ethanol) for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that older zebrafish exposed to no MeHg or EtOH learned and retained avoidance responses. However, 0.01 mM or higher concentrations of MeHg exposure impaired avoidance learning in a dose-dependent manner with 0.3 mM of MeHg exposure producing death during the exposure period or shortly after the exposure but before the avoidance training. In Experiment 2, 1-yearold zebrafish were randomly divided into groups and were exposed to the same concentrations of MeHg used in Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 mM of MeHg learned and retained avoidance responses, while 0.1 or 0.3 mM of MeHg exposure impaired avoidance learning in a dose-dependent manner. The study suggested that MeHg exposure produced learning impairments at a much lower concentration of MeHg exposure and more severely in older adult compared against younger adult zebrafish even after short exposure times

    Effect of MeHg on the NLR of 48 hpf zebrafish embryos.

    No full text
    <p>Values are presented as the mean ± SE. Means sharing the same superscript are not significantly different from each other P < 0.05.</p

    The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (<i>Danio rerio</i>) Embryos and Eleutheroembryos Exposed to Methylmercury

    No full text
    <div><p>This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive <i>maco</i> strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.</p></div

    Spontaneous swimming of 6 dpf MeHg-exposed zebrafish eleutheroembryos and the NLR of MeHg-exposed 48 hpf embryos.

    No full text
    <p>The spontaneous-swimming assay elucidated subtle yet significant (P<0.001) increases in the total distance travelled (mm in 5 minutes) of free swimming 6 dpf zebrafish exposed to 0.01 and 0.03μM of MeHg (A). Eleutheroembryos exposed to 0.01μM MeHg as embryos also had an increased activity (% of time active) relative to all other doses (B). The NLR assay was conducted on 48 hpf embryos exposed to 0, 0.01, 0.03 and 0.1μM; the activity curves of all MeHg-exposed embryos were compared to the control (C through E). As observed in 6 dpf eleutheroembryos, 48 hpf zebrafish embryos exposed to 0.01 and 0.03μM of MeHg exhibited an increase in distance traveled during the analysis period (F).</p

    Modulation of the NLR in 48 hpf zebrafish embryos by chronic, low-dose exposure to nicotine during development.

    No full text
    <p>Values are presented as the mean ± SE. Means sharing the same superscript are not significantly different from each other P < 0.05.</p
    corecore